Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 6(2): e03456, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32140584

RESUMEN

Arjunolic acid (AA) a plant derived pentacyclic triterpenoid which showed effective anticancer activity against MCF-7 and HeLa cells as well as no significant toxic effect was observed against normal lymphocytes. In the current study the self assemble property of arjunolic acid gives an extra emphasis on anticancer activity which was proved by several fluorescence studies like ROS generation, EtBr/AO and DAPI staining. At a selected dose of 50µg/ml AA disrupt the redox balance inside the cancer cells by producing reactive oxygen species. The apoptotic event was mediated by two key regulator proteins TNF-α and NF-κß which was proved here. The increment of the pro-inflammatory cytokines indicates the ROS mediated pathway of cancer cell apoptosis.

3.
Chem Rec ; 17(9): 841-873, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28195390

RESUMEN

Studies on plant metabolites have gained renewed interest in recent years because these can serve as renewable chemicals for the development of a sustainable society. Among various plant secondary metabolites, terpenoids constitute the major component and triterpenoids are the 30C subset of it. In recent years, triterpenoids have drawn the attention of scientific community due to many of its potential and realized applications in medicine, drug delivery, thermochromic materials, pollutant capture, catalysis, liquid crystals, etc. In this personal review, we have discussed our computational results carried out on sixty representative naturally occurring triterpenoids demonstrating that all the triterpenoids are renewable functional nano-entities. Study of the self-assembly of several triterpenoids such as betulin, betulinic acid, oleanolic acid, glycyrrhetinic acid and arjunolic acid and their derivatives in different liquids have also been discussed. Moreover, the utilization of the resulting supramolecular architectures such as vesicles, spheres, flowers and fibrillar networks of nano- to micrometer dimensions and gels have also been discussed in the perspective of green, renewable and nanos.


Asunto(s)
Nanopartículas/química , Terpenos/química , Ciclización , Geles/química , Ácido Glicirretínico/química , Microscopía Electrónica de Rastreo , Ácido Oleanólico/química , Triterpenos Pentacíclicos , Plantas/química , Plantas/metabolismo , Triterpenos/química , Ácido Betulínico
4.
Chem Asian J ; 11(17): 2406-14, 2016 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-27511441

RESUMEN

The generation of organic-inorganic hybrid materials from renewable resources and their utilization in basic and applied areas has been at the forefront of research in recent years for sustainable development. Herein, a novel organic-inorganic trihybrid material was synthesized by in situ generation of palladium nanoparticles (PdNPs) in a hybrid gel matrix based on renewable chemicals. Constituents of the hybrid gel included a pentacyclic triterpenoid arjunolic acid extractable from Terminalia arjuna and the leaf extract of Chrysophyllum cainito rich in flavonoids. We took advantage of the presence of flavonoid molecules in this hybrid gel to generate an advanced trihybrid gel through in situ reduction of doped Pd(II) salts to stable PdNPs. The xerogel of this trihybrid material was used as a recyclable heterogeneous catalyst for C-C coupling and reduction reactions in aqueous media. We also demonstrated that the in situ generated PdNPs containing trihybrid material was a more efficient catalyst than the trihybrid material generated with presynthesized PdNPs.

5.
Langmuir ; 29(6): 1766-78, 2013 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-23305252

RESUMEN

Ten aliphatic and aromatic ketals of arjunolic acid, a renewable, nanosized triterpenic acid which is obtainable from Terminalia arjuna, have been synthesized upon condensation with aldehydes. Self-assembly properties of the ketals have been studied in a wide range of organic liquids. With the exception of the p-nitrobenzylidene derivative, low concentrations of the ketals self-assemble and form gel-like dispersions in many of the organic liquids examined. The morphologies of the assemblies, studied at different distance scales by optical, electron, and atomic-force microscopies, consisted of fibrillar networks and vesicles which were able to entrap 5(6)-carboxyfluorescein as a guest molecule. X-ray diffractograms indicate that the fibrillar objects are crystalline. A charge-transfer complex was formed from a 1:1 mixture of ketal derivatives with electron-donating and electron-accepting groups, and the 9-anthrylidene derivative in its fibrillar network dimerized upon irradiation. Results demonstrate that subtle changes in the ketal structures can lead to very different aggregation pathways.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA