Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Pharmacol Pharm Sci ; 2024: 6655996, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38298460

RESUMEN

Obesity, characterized by excessive adipose tissue accumulation, has emerged as a crucial determinant for a wide range of chronic medical conditions. The identification of effective interventions for obesity is of utmost importance. Widely researched antiobesity agents focus on pancreatic lipase, a significant therapeutic target. This study presented the evaluation of ten flavonoid compounds in terms of their inhibitory activities against pancreatic lipase, utilizing both in vitro and in silico approaches. The results indicated that all tested compounds demonstrated modest and weaker inhibitory activities compared to the reference compound, orlistat. Among the compounds investigated, F01 exhibited the highest potency, with an IC50 value of 17.68 ± 1.43 µM. The enzymatic inhibition kinetic analysis revealed that F01 operated through a competitive inhibition mechanism with a determined Ki of 7.16 µM. This value suggested a moderate binding affinity for the pancreatic lipase enzyme. Furthermore, the associated Vmax value was quantified at 0.03272 ΔA·min-1. In silico studies revealed that F01 displayed a binding mode similar to that of orlistat, despite lacking an active functional group capable of forming a covalent bond with Ser152 of the catalytic triad. However, F01 formed a hydrogen bond with this crucial amino acid. Furthermore, F01 interacted with other significant residues at the enzyme's active site, particularly those within the lid domain. Based on these findings, F01 demonstrates substantial potential as a candidate for further investigations.

2.
Molecules ; 25(18)2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-32899576

RESUMEN

Acetylcholinesterase (AChE) and ß-secretase (BACE-1) have become attractive therapeutic targets for Alzheimer's disease (AD). Flavones are flavonoid derivatives with various bioactive effects, including AChE and BACE-1 inhibition. In the present work, a series of 14 flavone derivatives was synthesized in relatively high yields (35-85%). Six of the synthetic flavones (B4, B5, B6, B8, D6 and D7) had completely new structures. The AChE and BACE-1 inhibitory activities were tested, giving pIC50 3.47-4.59 (AChE) and 4.15-5.80 (BACE-1). Three compounds (B3, D5 and D6) exhibited the highest biological effects on both AChE and BACE-1. A molecular docking investigation was conducted to explain the experimental results. These molecules could be employed for further studies to discover new structures with dual action on both AChE and BACE-1 that could serve as novel therapies for AD.


Asunto(s)
Acetilcolinesterasa/metabolismo , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Inhibidores de la Colinesterasa/farmacología , Simulación por Computador , Flavonas/síntesis química , Flavonas/farmacología , Acetilcolinesterasa/química , Ácido Aspártico Endopeptidasas/química , Ácido Aspártico Endopeptidasas/metabolismo , Flavonas/química , Modelos Lineales , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad Cuantitativa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA