Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 10(11)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34834804

RESUMEN

Biochemical compositions and photosynthetic characteristics of three naturally cohabitated macroalgae, Ulva fasciata, Sargassum hemiphyllum and Grateloupia livida, were comparably explored in the field conditions in Daya Bay, northern South China Sea, as well as their responses to temperature rise. Chlorophyll a (Chl a) and carotenoids contents of U. fasciata were 1.00 ± 0.15 and 0.57 ± 0.08 mg g-1 in fresh weight (FW), being about one- and two-fold higher than that of S. hemiphyllum and G. livida; and the carbohydrate content was 20.3 ± 0.07 mg g-1 FW, being about three- and one-fold higher, respectively. Throughout the day, the maximal photochemical quantum yield (FV/FM) of Photosystem II (PS II) of these three macroalgae species decreased from morning to noon, then increased to dusk and kept steady at nighttime. Consistently, the rapid light curve-derived light utilization efficiency (α) and maximum relative electron transfer rate (rETRmax) were lower at noon than that at morning- or night-time. The FV/FM of U. fasciata (varying from 0.78 to 0.32) was 38% higher than that of G. livida throughout the day, and that of S. hemiphyllum was intermediate. The superoxide dismutase (SOD) and catalase (CAT) activities in U. fasciata were lower than that in S. hemiphyllum and G. livida. Moreover, the rises in temperature species-specifically mediated the damage (k) caused by stressful high light and the corresponding repair (r) to photosynthetic apparatus, making the r/k ratio increase with the rising temperature in U. fasciata, unchanged in S. hemiphyllum but decreased in G. livida. Our results indicate that U. fasciata may compete with S. hemiphyllum or G. livida and dominate the macroalgae community under aggravatedly warming future in the Daya Bay.

2.
Microorganisms ; 10(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35056465

RESUMEN

Cell size of phytoplankton is known to influence their physiologies and, consequently, marine primary production. To characterize the cell size-dependent photophysiology of phytoplankton, we comparably explored the photosynthetic characteristics of piconano- (<20 µm) and micro-phytoplankton cell assemblies (>20 µm) in the Daya Bay, northern South China Sea, using a 36-h in situ high-temporal-resolution experiment. During the experimental periods, the phytoplankton biomass (Chl a) in the surface water ranged from 0.92 to 5.13 µg L-1, which was lower than that in bottom layer (i.e., 1.83-6.84 µg L-1). Piconano-Chl a accounted for 72% (mean value) of the total Chl a, with no significant difference between the surface and bottom layers. The maximum photochemical quantum yield (FV/FM) of Photosystem II (PS II) and functional absorption cross-section of PS II photochemistry (σPS II) of both piconano- and micro-cells assemblies varied inversely with solar radiation, but this occurred to a lesser extent in the former than in the latter ones. The σPS II of piconano- and micro-cell assemblies showed a similar change pattern to the FV/FM in daytime, but not in nighttime. Moreover, the fluorescence light curve (FLC)-derived light utilization efficiency (α) displayed the same daily change pattern as the FV/FM, and the saturation irradiance (EK) and maximal rETR (rETRmax) mirrored the change in the solar radiation. The FV/FM and σPS II of the piconano-cells were higher than their micro-counterparts under high solar light; while the EK and rETRmax were lower, no matter in what light regimes. In addition, our results indicate that the FV/FM of the micro-cell assembly varied quicker in regard to Chl a change than that of the piconano-cell assembly, indicating the larger phytoplankton cells are more suitable to grow than the smaller ones in the Daya Bay through timely modulating the PS II activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA