Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Evol Appl ; 13(1): 116-131, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31892947

RESUMEN

We evaluate genomic data, relative to phenotypic and climatic data, as a basis for assisted gene flow and genetic conservation. Using a seedling common garden trial of 281 lodgepole pine (Pinus contorta) populations from across western Canada, we compare genomic data to phenotypic and climatic data to assess their effectiveness in characterizing the climatic drivers and spatial scale of local adaptation in this species. We find that phenotype-associated loci are equivalent or slightly superior to climate data for describing local adaptation in seedling traits, but that climate data are superior to genomic data that have not been selected for phenotypic associations. We also find agreement between the climate variables associated with genomic variation and with 20-year heights from a long-term provenance trial, suggesting that genomic data may be a viable option for identifying climatic drivers of local adaptation where phenotypic data are unavailable. Genetic clines associated with the experimental traits occur at broad spatial scales, suggesting that standing variation of adaptive alleles for this and similar species does not require management at scales finer than those indicated by phenotypic data. This study demonstrates that genomic data are most useful when paired with phenotypic data, but can also fill some of the traditional roles of phenotypic data in management of species for which phenotypic trials are not feasible.

2.
Nat Commun ; 9(1): 783, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29472566

RESUMEN

Climate change can drive local climates outside the range of their historical year-to-year variability, straining the adaptive capacity of ecological and human communities. We demonstrate that dependencies between climate variables can produce larger and earlier departures from natural variability than is detectable in individual variables. Using the example of summer temperature (Tx) and precipitation (Pr), we show that this departure intensification effect occurs when the bivariate climate change trajectory is misaligned with the dominant mode of joint historical variability. Departure intensification is evident in all six CMIP5 models that we examined: 23% (9-34%) of the global land area of each model exhibits a pronounced increase in 2σ anomalies in the Tx-Pr regime relative to Tx or Pr alone. Observational data suggest that summer Tx-Pr correlations in distinct regions on all continents are sufficient to produce departure intensification. Precipitation can be an important driver of multivariate climate change signals relative to natural variability, despite typically having a much weaker univariate signal than temperature.

3.
Glob Chang Biol ; 23(9): 3934-3955, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28145063

RESUMEN

Novel climates - emerging conditions with no analog in the observational record - are an open problem in ecological modeling. Detecting extrapolation into novel conditions is a critical step in evaluating bioclimatic projections of how species and ecosystems will respond to climate change. However, biologically informed novelty detection methods remain elusive for many modeling algorithms. To assist with bioclimatic model design and evaluation, we present a first-approximation assessment of general novelty based on a simple and consistent characterization of climate. We build on the seminal global analysis of Williams et al. (2007 PNAS, 104, 5738) by assessing of end-of-21st-century novelty for North America at high spatial resolution and by refining their standardized Euclidean distance into an intuitive Mahalanobian metric called sigma dissimilarity. Like this previous study, we found extensive novelty in end-of-21st-century projections for the warm southern margin of the continent as well as the western Arctic. In addition, we detected localized novelty in lower topographic positions at all latitudes: By the end of the 21st century, novel climates are projected to emerge at low elevations in 80% and 99% of ecoregions in the RCP4.5 and RCP8.5 emissions scenarios, respectively. Novel climates are limited to 7% of the continent's area in RCP4.5, but are much more extensive in RCP8.5 (40% of area). These three risk factors for novel climates - regional susceptibility, topographic position, and the magnitude of projected climate change - represent a priori evaluation criteria for the credibility of bioclimatic projections. Our findings indicate that novel climates can emerge in any landscape. Interpreting climatic novelty in the context of nonlinear biological responses to climate is an important challenge for future research.


Asunto(s)
Cambio Climático , Ecosistema , Cadena Alimentaria , Predicción , América del Norte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA