Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemistry ; : e202402969, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39183717

RESUMEN

In recent times, diaryliodonium reagents (DAIRs) have witnessed a resurgence as arylating reagents, especially under photoinduced conditions. However, reactions proceeding through electron donor-acceptor (EDA) complex formation with DAIRs are restricted to electron-rich reacting partners serving as donors due to the well-known cage effect. We discovered a practical and high-yielding visible-light-induced EDA platform to generate aryl radicals from the corresponding DAIRs and use them to synthesize key chalcogenides. In this process, an array of DAIRs and dichalcogenides react in the presence of 1,4 diazabicyclo[2.2.2]octane (DABCO) as a cheap and readily available donor, furnishing a variety of di(hetero)aryl and aryl/alkyl chalcogenides in good yields. The method is scalable, features a broad scope with good yields, and operates under open-to-air conditions. The photoinduced chalcogenation technology is suitable for late-stage functionalizations and disulfide bioconjugations and facilitates access to biologically relevant thioesters, dithiocarbamates, sulfoximines, and sulfones. Moreover, the method applies to synthesizing diverse pharmaceuticals, such as vortioxetine, promazine, mequitazine, and dapsone, under amenable conditions.

3.
Org Lett ; 25(46): 8290-8295, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37962249

RESUMEN

We report a photoredox system comprising sodium iodide, triphenyl phosphine, and N,N,N',N'-tetramethylethylenediamine (TMEDA) that can form a self-assembled tetrameric electron donor-acceptor (EDA) complex with diaryliodonium reagents (DAIRs) and furnish aryl radicals upon visible light irradiation. This practical mode of activation of DAIRs enables arylation of an array of heterocycles under mild conditions to provide the respective heteroaryl-(hetero)aryl assembly in moderate to excellent yields. Detailed mechanistic investigations comprising photophysical and DFT studies provided insight into the reaction mechanism.

4.
Chem Sci ; 14(39): 10768-10776, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37829006

RESUMEN

An important objective in organic synthesis and medicinal chemistry is the capacity to access structurally varied and complex molecules rapidly and affordably from easily available starting materials. Herein, a protocol for the structurally divergent synthesis of benzofuran fused azocine derivatives and spiro-cyclopentanone benzofurans has been developed via chiral bifunctional urea catalyzed reaction between aurone-derived α,ß-unsaturated imine and ynone followed by switchable divergent annulation reactions by Lewis base catalysts (DBU and PPh3) with concomitant epimerization. The skeletally diversified products were formed in high yields with high diastereo- and enantioselectivities. Computational analysis with DFT and accurate DLPNO-CCSD(T) has been employed to gain deeper insights into mechanistic intricacies and investigate the role of chiral and Lewis base catalysts in skeletal diversity.

5.
J Org Chem ; 88(4): 2543-2549, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36749678

RESUMEN

We conceptualized a novel disconnection approach for the synthesis of fused tetrahydroquinolines that exploits a visible light-mediated radical (4 + 2) annulation between alkyl N-(acyloxy)phthalimides and N-substituted maleimides in the presence of DIPEA as an additive. The reaction proceeds through the formation of a photoactivated electron donor-acceptor complex between alkyl NHPI esters and DIPEA, and the final tetrahydroquinolines were obtained in a complete regioselective fashion. The methodology features a broad scope and good functional group tolerance and operates under metal- and catalyst-free reaction conditions. Detailed mechanistic investigations including density functional theory studies provide insight into the reaction pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA