Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Function (Oxf) ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39264045

RESUMEN

Kv1.2 potassium channels influence excitability and action potential propagation in the nervous system. Unlike closely-related Kv1 channels, Kv1.2 exhibits highly variable voltage-dependence of gating, attributed to regulation by unidentified extrinsic factors. Variability of Kv1.2 gating is strongly influenced by the extracellular redox potential, and we demonstrate that Kv1.2 currents in dorsal root ganglion sensory neurons exhibit similar variability and redox sensitivity as observed when the channel is heterologously expressed in cell lines. We used a functional screening approach to test the effects of candidate regulatory proteins on Kv1.2 gating, using patch clamp electrophysiology. Among 52 candidate genes tested, we observed that co-expression with the transmembrane lectin LMAN2 led to a pronounced gating shift of Kv1.2 activation to depolarized voltages in CHO and L(tk-) cell lines, accompanied by deceleration of activation kinetics. Overexpression of LMAN2 promoted a slow gating mode of Kv1.2 that mimics the functional outcomes of extracellular reducing conditions, and enhanced sensitivity to extracellular reducing agents. In contrast, shRNA-mediated knockdown of endogenous LMAN2 in cell lines reduced Kv1.2 redox sensitivity and gating variability. Kv1.2 sensitivity to LMAN2 is abolished by mutation of neighboring residues F251 and T252 in the intracellular S2-S3 linker, and these also abolish redox-dependent gating changes, suggesting that LMAN2 influences the same pathway as redox for Kv1.2 modulation. In conclusion, we identified LMAN2 as a candidate regulatory protein that influences redox-dependent modulation of Kv1.2, and clarified the structural elements of the channel that are required for sensitivity.

2.
J Vis Exp ; (192)2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36912525

RESUMEN

Dorsal root ganglia (DRGs) are peripheral structures adjacent to the dorsal horn of the spinal cord, which house the cell bodies of sensory neurons as well as various other cell types. Published culture protocols often refer to whole dissociated DRG cultures as being neuronal, despite the presence of fibroblasts, Schwann cells, macrophages, and lymphocytes. While these whole DRG cultures are sufficient for imaging applications where neurons can be discerned based on morphology or staining, protein or RNA homogenates collected from these cultures are not primarily neuronal in origin. Here, we describe an immunopanning sequence for cultured mouse DRGs. The goal of this method is to enrich DRG cultures for neurons by removing other cell types. Immunopanning refers to a method of removing cell types by adhering antibodies to cell culture dishes. Using these dishes, we can negatively select against and reduce the number of fibroblasts, immune cells, and Schwann cells in culture. This method allows us to increase the percentage of neurons in cultures.


Asunto(s)
Técnicas de Cultivo de Célula , Ganglios Espinales , Ratones , Animales , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Células Receptoras Sensoriales/metabolismo
3.
Sci Rep ; 12(1): 20995, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36470947

RESUMEN

Multiple Sclerosis (MS) is an autoimmune disease with notable sex differences. Women are not only more likely to develop MS but are also more likely than men to experience neuropathic pain in the disease. It has been postulated that neuropathic pain in MS can originate in the peripheral nervous system at the level of the dorsal root ganglia (DRG), which houses primary pain sensing neurons (nociceptors). These nociceptors become hyperexcitable in response to inflammation, leading to peripheral sensitization and eventually central sensitization, which maintains pain long-term. The mouse model experimental autoimmune encephalomyelitis (EAE) is a good model for human MS as it replicates classic MS symptoms including pain. Using EAE mice as well as naïve primary mouse DRG neurons cultured in vitro, we sought to characterize sex differences, specifically in peripheral sensory neurons. We found sex differences in the inflammatory profile of the EAE DRG, and in the TNFα downstream signaling pathways activated intracellularly in cultured nociceptors. We also found increased cell death with TNFα treatment. Given that TNFα signaling has been shown to initiate intrinsic apoptosis through mitochondrial disruption, this led us to investigate sex differences in the mitochondria's response to TNFα. Our results demonstrate that male sensory neurons are more sensitive to mitochondrial stress, making them prone to neuronal injury. In contrast, female sensory neurons appear to be more resistant to mitochondrial stress and exhibit an inflammatory and regenerative phenotype that may underlie greater nociceptor hyperexcitability and pain. Understanding these sex differences at the level of the primary sensory neuron is an important first step in our eventual goal of developing sex-specific treatments to halt pain development in the periphery before central sensitization is established.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Ganglios Espinales , Esclerosis Múltiple , Neuralgia , Caracteres Sexuales , Animales , Femenino , Humanos , Masculino , Ratones , Encefalomielitis Autoinmune Experimental/fisiopatología , Ganglios Espinales/fisiopatología , Esclerosis Múltiple/fisiopatología , Neuralgia/etiología , Neuralgia/fisiopatología , Nociceptores/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
4.
Front Neurol ; 12: 780876, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34938263

RESUMEN

Multiple Sclerosis (MS) is a debilitating autoimmune disease often accompanied by severe chronic pain. The most common type of pain in MS, called neuropathic pain, arises from disease processes affecting the peripheral and central nervous systems. It is incredibly difficult to study these processes in patients, so animal models such as experimental autoimmune encephalomyelitis (EAE) mice are used to dissect the complex mechanisms of neuropathic pain in MS. The pleiotropic cytokine tumor necrosis factor α (TNFα) is a critical factor mediating neuropathic pain identified by these animal studies. The TNF signaling pathway is complex, and can lead to cell death, inflammation, or survival. In complex diseases such as MS, signaling through the TNFR1 receptor tends to be pro-inflammation and death, whereas signaling through the TNFR2 receptor is pro-homeostatic. However, most TNFα-targeted therapies indiscriminately block both arms of the pathway, and thus are not therapeutic in MS. This review explores pain in MS, inflammatory TNF signaling, the link between the two, and how it could be exploited to develop more effective TNFα-targeting pain therapies.

5.
Mol Pain ; 16: 1744806920946889, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32787562

RESUMEN

Chronic pain is a debilitating condition that affects roughly a third to a half of the world's population. Despite its substantial effect on society, treatment for chronic pain is modest, at best, notwithstanding its side effects. Hence, novel therapeutics are direly needed. Emerging evidence suggests that calcium plays an integral role in mediating neuronal plasticity that underlies sensitization observed in chronic pain states. The endoplasmic reticulum and the mitochondria are the largest calcium repositories in a cell. Here, we review how stressors, like accumulation of misfolded proteins and oxidative stress, influence endoplasmic reticulum and mitochondria function and contribute to chronic pain. We further examine the shuttling of calcium across the mitochondrial-associated membrane as a mechanism of cross-talk between the endoplasmic reticulum and the mitochondria. In addition, we discuss how endoplasmic reticulum stress, mitochondrial impairment, and calcium dyshomeostasis are implicated in various models of neuropathic pain. We propose a novel framework of endoplasmic reticulum-mitochondria signaling in mediating pain hypersensitivity. These observations require further investigation in order to develop novel therapies for chronic pain.


Asunto(s)
Señalización del Calcio/genética , Calcio/metabolismo , Dolor Crónico/metabolismo , Estrés del Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Neuralgia/metabolismo , Animales , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/genética , Retículo Endoplásmico/genética , Humanos , Mitocondrias/genética , Mitocondrias/patología , Neuralgia/genética , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA