Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Waste Manag ; 132: 23-30, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34304019

RESUMEN

Development of green, efficient and profitable recycling processes for plastic material will contribute to reduce the expanding plastic pollution and microplastics accumulation in the environment. Polyurethanes (PU) are versatile polymers with a large range of chemical compositions and structures. This variability increases the complexity of PU waste management. Biological recycling researchers have recently demonstrated great interest in polyethylene terephthalate. The adaptation of this route towards producing polyurethanes requires the discovery of enzymes that are able to depolymerize a large variety of PU. A laccase mediated system (LMS) was tested on four representative PU models, with different structures (foams and thermoplastics), and chemical compositions (polyester- and polyether-based PU). Size exclusion chromatography was performed on the thermoplastics and this revealed a significant reduction in the molar masses after 18 days of incubation at 37 °C. Degradation of foams under the same conditions was demonstrated by microscopy and compression assay for both polyester- and polyether-based PU. This study represents a major breakthrough in PU degradation, as it is the first time that enzymatic degradation has been clearly demonstrated on a polyether-based PU foam. This work is a step forward in the development of a sustainable recycling pathway, adapted to a large variety of PU materials.


Asunto(s)
Lacasa , Poliuretanos , Plásticos , Poliésteres , Polímeros
2.
Methods Enzymol ; 648: 317-336, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33579410

RESUMEN

For decades, polyurethanes (PUR) have mainly been synthesized for long-term applications and are therefore highly persistent in the environment. Proper waste disposal approaches, including recycling techniques, must be developed to limit the accumulation of PUR in the environment. Evaluation of enzymatic polyurethane degradation is needed for the development of enzymatic recycling. A series of techniques has been carefully implemented to monitor the biotic and abiotic degradation of PUR. Both the degraded polymer and the degradation products are analyzed to obtain a complete overview of the degradation.


Asunto(s)
Poliuretanos , Reciclaje , Biodegradación Ambiental , Polímeros
3.
ChemSusChem ; 14(19): 4234-4241, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-33629810

RESUMEN

Polyurethanes (PUs) are highly resistant materials used for building insulation or automotive seats. The polyurethane end-of-life issue must be addressed by the development of efficient recycling techniques. Since conventional recycling processes are not suitable for thermosets, waste management of PU foam is particularly questioning. By coupling biological and chemical processes, this study aimed at developing a green recycling pathway for PU foam using enzymes for depolymerization. For instance, enzymatic degradation of a PU foam synthesized with polycaprolactone and toluene diisocyanate led to a weight loss of 25 % after 24 h of incubation. The corresponding degradation products were recovered and identified as 6-hydroxycaproic acid and a short acid-terminated diurethane. An organometallic-catalyzed synthesis of second-generation polymers from these building blocks was carried out. A polymer with a high average molar mass of 74000 (Mw ) was obtained by mixing 50 % of recycled building blocks and 50 % of neat 6-hydroxycaproic acid. A poly(ester urethane) was synthesized without the use of toxic and decried polyisocyanates. It is the first time that a study offers the vision of a recycling loop starting from PU wastes and finishing with a second-generation polymer in a full circular approach.

4.
Biotechnol Adv ; 39: 107457, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31689471

RESUMEN

Polyurethanes (PU) are a family of versatile synthetic polymers intended for diverse applications. Biological degradation of PU is a blooming research domain as it contributes to the design of eco-friendly materials sensitive to biodegradation phenomena and the development of green recycling processes. In this field, an increasing number of studies deal with the discovery and characterization of enzymes and microorganisms able to degrade PU chains. The synthesis of short lifespan PU material sensitive to biological degradation is also of growing interest. Measurement of PU degradation can be performed by a wide range of analytical tools depending on the architecture of the materials and the biological entities. Recent developments of these analytical techniques allowed for a better understanding of the mechanisms involved in PU biodegradation. Here, we reviewed the evaluation of biological PU degradation, including the required analytics. Advantages, drawbacks, specific uses, and results of these analytics are largely discussed to provide a critical overview and support future studies.


Asunto(s)
Poliuretanos/metabolismo , Reciclaje , Materiales Biocompatibles , Biodegradación Ambiental
5.
Waste Manag ; 85: 141-150, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30803567

RESUMEN

Biological recycling of polyurethanes (PU) is a huge challenge to take up in order to reduce a large part of the environmental pollution from these materials. However, enzymatic depolymerization of PU still needs to be improved to propose valuable and green solutions. The present study aims to identify efficient PU degrading enzymes among a collection of 50 hydrolases. Screenings based on model molecules were performed leading to the selection of an efficient amidase (E4143) able to hydrolyze the urethane bond of a low molar mass molecule and an esterase (E3576) able to hydrolyze a waterborne polyester polyurethane dispersion. Degradation activities of the amidase, the esterase and a mix of these enzymes were then evaluated on four thermoplastic polyurethanes (TPU) specifically designed for this assay. The highest degradation was obtained on a polycaprolactone polyol-based polyurethane with weight loss of 33% after 51 days measured for the esterase. Deep cracks on the polymer surface observed by scanning electron microscopy and the presence of oligomers on the remaining TPU detected by size exclusion chromatography evidenced the polymer degradation. Mixing both enzymes led to an increased amount of urethane bonds hydrolysis of the polymer. 6-hydroxycaproic acid and 4,4'-methylene dianiline were recovered after depolymerization as hydrolysis products. Such building blocks could get a second life with the synthesis of new macromolecular architectures.


Asunto(s)
Poliuretanos , Reciclaje , Amidohidrolasas , Materiales Biocompatibles , Esterasas , Hidrólisis
6.
Microb Biotechnol ; 12(3): 544-555, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30592151

RESUMEN

As a highly resistant polymer family, polyurethanes (PU) are responsible for increasing environmental issues. Then, PU biodegradation is a challenging way to develop sustainable waste management processes based on biological recycling. Since the metabolic diversity of fungi is a major asset for polymer degradation, nearly thirty strains were isolated from sampling on six different PU wastes-containing environments. A screening of the fungi on four thermoplastic PU (TPU) with different macromolecular architectures led to the selection of three strains able to use two polyester PU as sole carbon source: Alternaria sp., Penicillium section Lanata-Divaricata and Aspergillus section flavi. Weight loss, FT-IR, Scanning Electron Microscopy and Size Exclusion Chromatography analyses revealed that these three fungi degrade slightly and similarly a fatty acid dimer-based TPU while variability of degradation was noticed on a polycaprolactone-based TPU. On this last TPU, robust analysis of the degraded polymers showed that the Penicillium strain was the best degrading microorganism. Membrane enzymes seemed to be involved in this degradation. It is the first time that a strain of Penicillium of the section Lanata-Divaricata displaying PU biodegradation ability is isolated. These newly discovered fungi are promising for the development of polyester PU waste management process.


Asunto(s)
Alternaria/aislamiento & purificación , Aspergillus/aislamiento & purificación , Residuos Industriales , Penicillium/aislamiento & purificación , Poliuretanos/metabolismo , Administración de Residuos/métodos , Alternaria/clasificación , Alternaria/metabolismo , Aspergillus/clasificación , Aspergillus/metabolismo , Biotransformación , Carbono/metabolismo , Penicillium/clasificación , Penicillium/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA