Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecology ; 94(2): 414-23, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23691660

RESUMEN

Wind disturbance profoundly shapes temperate forests but few studies have evaluated patterns and mechanisms of long-term forest dynamics following major windthrows. In 1990, we initiated a large hurricane simulation experiment in a 0.8-ha manipulation (pulldown) and 0.6-ha control area of a maturing Quercus rubra--Acer rubrum forest in New England. We toppled 276 trees in the pulldown, using a winch and cable, in the northwesterly direction of natural treefall from major hurricanes. Eighty percent of canopy trees and two-thirds of all trees > or = 5 cm dbh (diameter at breast height) suffered direct and indirect damage. We used 20 years of measurements to evaluate the trajectory and mechanisms of forest response after intense disturbance. Based on the patch size and disturbance magnitude, we expected pioneer tree and understory species to drive succession. The first decade of analyses emphasized tree seedling establishment and sprouting by damaged trees as the dominant mechanisms of forest recovery in this extensive damaged area. However, despite 80% canopy damage and 8000-m2 patch size, surviving overstory and advance regeneration controlled longer-term forest development. Residual oaks make up 42% of stand basal area after 20 years. The new cohort of trees, dominated by black birch advance regeneration, contributes 30% of stand basal area. There were shifts in understory vegetation composition and cover, but few species were gained or lost after 20 years. Stand productivity rebounded quickly (litterfall recovered to pre-disturbance levels in six years), but we predict that basal area in the pulldown will lag behind the control (which gained 6 m2/ha over 20 years) for decades to come. This controlled experiment showed that although the scale and intensity of damage were great, abundant advance regeneration, understory vegetation, and damaged trees remained, allowing the forest to resist changes in ecosystem processes and invasion by new species.


Asunto(s)
Biodiversidad , Tormentas Ciclónicas , Árboles/crecimiento & desarrollo , Simulación por Computador , Modelos Biológicos , Dinámica Poblacional , Especificidad de la Especie , Factores de Tiempo
2.
Inorg Chem ; 48(1): 5-7, 2009 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-19046077

RESUMEN

The treatment of the hydrazine complex cis-[Fe(N(2)H(4))(dmpe)(2)](2+) with base afforded the diazene complex cis-[Fe(N(2)H(2))(dmpe)(2)]. This reaction is reversed by the treatment of the diazene complex with a mild acid, while treatment of the hydrazine complex with a mixture of KOBu(t) and Bu(t)Li afforded the dinitrogen complex [Fe(N(2))(dmpe)(2)].


Asunto(s)
Hidrazinas/química , Imidas/química , Hierro/química , Nitrógeno/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química
3.
Dalton Trans ; (31): 3398-406, 2007 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-17664976

RESUMEN

Methylpalladium(II) carbene complexes of the type [Pd(NHC)Me(P-P)]BF(4) (NHC = N-heterocyclic carbene, P-P = chelating phosphine) have been synthesised, the complex [Pd(tmiy)Me(dcype)]BF(4) (tmiy = 1,3,4,5-tetramethylimidazol-2-ylidene, dcype = 1,2-bis(dicyclohexylphosphino)ethane) being characterised crystallographically. Complexes bearing the tmiy ligands were shown to decompose in an analogous manner to complexes bearing monodentate phosphine ligands, with the rate of decomposition being nominally linked to the size of the chelate ring. The decomposition of these complexes in the presence of aryl halides-expected to yield Pd(Ar)X(P-P)-was studied and shown instead to yield PdX(2)(P-P) and [Pd(tmiy)X(P-P)]BF(4). Additionally, Pd(Me)X(P-P) and Pd(Ar)X(P-P) were observed in some cases. Intermolecular cross-over reactions between the starting complex and Pd(Ar)X(P-P) were found to be the source of these unexpected products.


Asunto(s)
Hidrocarburos Halogenados/química , Metano/análogos & derivados , Compuestos Organometálicos/síntesis química , Paladio/química , Fosfinas/síntesis química , Hidrocarburos/síntesis química , Hidrocarburos/química , Metano/síntesis química , Metano/química , Conformación Molecular , Estructura Molecular , Compuestos Organometálicos/química , Fosfinas/química
4.
J Am Chem Soc ; 126(28): 8717-24, 2004 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-15250724

RESUMEN

The complete basis set method CBS-QB3 was used in conjunction with the CPCM solvation model to predict both the absolute and relative pKa's of 12 nucleophilic carbenes in dimethyl sulfoxide (DMSO), acetonitrile (MeCN), and water. Average absolute pKa values in DMSO ranged from 14.4 +/- 0.16 for 3-methylthiazol-2-ylidene (12) to 27.9 +/- 0.23 in the case of bis(dimethylamino)carbene (11), while values in MeCN were determined to be between 25.7 +/- 0.16 (12) and 39.1 +/- 0.25 (11). Relative pKa calculations yielded similar results. Calculations in aqueous solution gave pKa's between 21.2 +/- 0.2 (12) and 34.0 +/- 0.3 (11). Excellent agreement between calculated and experimental pKa's was obtained for the few cases where experimental numbers are available, confirming that this theoretical approach may be used to calculate highly accurate pKa values.

6.
Oecologia ; 128(1): 94-98, 2001 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28547095

RESUMEN

It has been long recognised that mineral elements, and nitrogen in particular, play an important role in determining the rate at which organic matter is decomposed. The magnitude and even the sign of the effects are, however, not universal and the underlying mechanisms are not well understood. In this paper, an explanation for the observed decreases in decomposition/CO2 evolution rates when inorganic nitrogen increases is proposed by combining a theoretical approach with the results of a 6-year litter decomposition-forest nitrogen fertilisation experiment. Our results show that the major causes of observed changes in decomposition rate after nitrogen fertilisation are increases in decomposer efficiency, more rapid formation of recalcitrant material, and, although less pronounced, decreased growth rate of decomposers. This gives a more precise description of how inorganic nitrogen modifies decomposition rates than the previously loosely used "decrease in microbial activity". The long-term consequences for soil carbon storage differ widely depending on which factor is changed; stores are much more sensitive to changes in decomposer efficiency and/or rate of formation of recalcitrant material than to changes in decomposer growth rate.

7.
Oecologia ; 103(3): 292-301, 1995 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28306822

RESUMEN

We followed the movements of 15N-labelled nitrate additions into biomass and soil pools of experimental plots (15×15 m each) in a mid-successional beech-maple-birch-spruce forest in order to identify sinks for nitrate inputs to a forest ecosystem. Replicate plots (n=3) were spray-irrigated with either 28 or 56 kg N ha-1 year-1 using 15N-labelled nitric acid solutions (δ15N = 344‰ ) during four successive growing seasons (April-October). The 15N contents of foliage, bolewood, forests floor and mineral soil (0-5 cm) increased during the course of treatments. Mass balance calculations showed that one-fourth to one-third of the nitrate applied to forest plots was assimilated into and retained by above ground plant tissues and surface soil horizons at both rates of nitrate application. Plant and microbial assimilation were of approximately equal importance in retaining nitrate additions to this forest. Nitrate use among tree species varied, however, with red spruce showing lower rates of nitrate assimilation into foliage and bolewood than American beech and other deciduous species.

8.
Ecol Appl ; 3(1): 156-166, 1993 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27759220

RESUMEN

Data are presented on changes in plant and soil processes in two forest types (red pine plantation and oak-maple forest) at the Harvard Forest, Petersham, Massachusetts, in response to 3 yr of chronic N fertilization. The hardwood stand exhibited greater N limitation on biological function than the pine stand prior to fertilization as evidenced by a lower net N mineralization rate, nearly undetectable rates of net nitrification, and very low foliar N content. N additions were made in six equal applications throughout the growing season, and consisted of 5 and 15 g°m-2 °yr-1 of N as ammonium nitrate. The pine stand showed larger changes than the hardwood stand for extractable N, foliar N, nitrification, and N leaching loss. Retention of added N was essentially 100% for all but the high application pine plot from which significant N leaching occurred in the 3rd yr of application. From 75 to 92% of N added to fertilized plots was retained in the soil, with larger fractions retained in the hardwood stand than the pine stand for all treatments. As hypothesized, the stands are exhibiting highly nonlinear patterns of nitrogen output in response to continuous nitrogen inputs. The implications of this nonlinearity for regional eutrophication of surface waters and atmospheric deposition control policy are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA