Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Physiol ; 599(21): 4925-4948, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34510468

RESUMEN

Active expiration is essential for increasing pulmonary ventilation during high chemical drive (hypercapnia). The lateral parafacial (pFL ) region, which contains expiratory neurones, drives abdominal muscles during active expiration in response to hypercapnia. However, the electrophysiological properties and synaptic mechanisms determining the activity of pFL expiratory neurones, as well as the specific conditions for their emergence, are not fully understood. Using whole cell electrophysiology and single cell quantitative RT-PCR techniques, we describe the intrinsic electrophysiological properties, the phenotype and the respiratory-related synaptic inputs to the pFL expiratory neurones, as well as the mechanisms for the expression of their expiratory activity under conditions of hypercapnia-induced active expiration, using in situ preparations of juvenile rats. We also evaluated whether these neurones possess intrinsic CO2 /[H+ ] sensitivity and burst generating properties. GABAergic and glycinergic inhibition during inspiration and expiration suppressed the activity of glutamatergic pFL expiratory neurones in normocapnia. In hypercapnia, these neurones escape glycinergic inhibition and generate burst discharges at the end of expiration. Evidence for the contribution of post-inhibitory rebound, CaV 3.2 isoform of T-type Ca2+ channels and intracellular [Ca2+ ] is presented. Neither intrinsic bursting properties, mediated by persistent Na+ current, nor CO2 /[H+ ] sensitivity or expression of CO2 /[H+ ] sensitive ion channels/receptors (TASK or GPR4) were observed. On the other hand, hyperpolarisation-activated cyclic nucleotide-gated and twik-related K+ leak channels were recorded. Post-synaptic disinhibition and the intrinsic electrophysiological properties of glutamatergic neurones play important roles in the generation of the expiratory oscillations in the pFL region during hypercapnia in rats. KEY POINTS: Hypercapnia induces active expiration in rats and the recruitment of a specific population of expiratory neurones in the lateral parafacial (pFL ) region. Post-synaptic GABAergic and glycinergic inhibition both suppress the activity of glutamatergic pFL neurones during inspiratory and expiratory phases in normocapnia. Hypercapnia reduces glycinergic inhibition during expiration leading to burst generation by pFL neurones; evidence for a contribution of post-inhibitory rebound, voltage-gated Ca2+ channels and intracellular [Ca2+ ] is presented. pFL glutamatergic expiratory neurones are neither intrinsic burster neurones, nor CO2 /[H+ ] sensors, and do not express CO2 /[H+ ] sensitive ion channels or receptors. Post-synaptic disinhibition and the intrinsic electrophysiological properties of glutamatergic neurones both play important roles in the generation of the expiratory oscillations in the pFL region during hypercapnia in rats.


Asunto(s)
Espiración , Neuronas , Animales , Hipercapnia , Ratas
2.
J Physiol ; 599(6): 1917-1932, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33507557

RESUMEN

KEY POINTS: Dysfunctions in the hypoglossal control of tongue extrinsic muscles are implicated in obstructive sleep apnoea (OSA) syndrome. Chronic intermittent hypoxia (CIH), an important feature of OSA syndrome, produces deleterious effects on the motor control of oropharyngeal resistance, but whether the hypoglossal motoneurones innervating the tongue extrinsic muscles are affected by CIH is unknown. We show that CIH enhanced the respiratory-related activity of rat hypoglossal nerve innervating the protrudor and retractor tongue extrinsic muscles. Intracellular recordings revealed increases in respiratory-related firing frequency and synaptic excitation of inspiratory protrudor and retractor hypoglossal motoneurones after CIH. CIH also increased their intrinsic excitability, depolarised resting membrane potential and reduced K+ -dominated leak conductance. CIH affected the breathing-related synaptic control and intrinsic electrophysiological properties of protrudor and retractor hypoglossal motoneurones to optimise the neural control of oropharyngeal function. ABSTRACT: Inspiratory-related tongue movements and oropharyngeal motor actions are controlled mainly by the protrudor and retractor extrinsic tongue muscles, which are innervated by the hypoglossal motoneurones. Chronic intermittent hypoxia (CIH), an important feature of obstructive sleep apnoea syndrome, produces detrimental effects on the contractile function of the tongue extrinsic muscles and the medullary inspiratory network of rodents. However, the impact of the CIH on the electrophysiological properties of protrudor and retractor hypoglossal motoneurones has not been described before. Using nerves and intracellular recordings in in situ preparation of rats (5 weeks old), we tested the hypothesis that CIH (FiO2 of 0.06, SaO2 74%, during 30-40 s, every 9 min, 8 h/day for 10 days) increases the intrinsic excitability of protrudor and retractor motoneurones from the hypoglossal motor nucleus of rats. Recordings of hypoglossal nerve, before its bifurcation to innervate the tongue protrudor and retractor muscles, revealed that CIH enhances its pre-inspiratory, simultaneously with the presence of active expiration, and inspiratory activities. These changes were mediated by increases in the respiratory-related firing frequency and synaptic excitation of inspiratory protrudor and retractor hypoglossal motoneurones. Besides, CIH increases their intrinsic excitability and depolarises resting membrane potential by reducing a K+ -dominated leak conductance. In conclusion, CIH enhances the respiratory-related neural control of oropharyngeal function of rats by increasing the synaptic excitation, intrinsic excitability, and reducing leak conductance in both protrudor and retractor hypoglossal motoneurones. We propose that these network and cellular changes are important to optimise the oropharyngeal resistance in conditions related to intermittent hypoxia.


Asunto(s)
Nervio Hipogloso , Neuronas Motoras , Animales , Hipoxia , Contracción Muscular , Ratas , Lengua
3.
Exp Physiol ; 105(1): 53-64, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31675759

RESUMEN

NEW FINDINGS: What is the central question of this study? Do A6 neurons modulate active expiratory and airway responses evoked by hypercapnia/acidosis? What is the main finding and its importance? Acute inhibition of A6 neurons reduced active expiratory, inspiratory and the associated oropharyngeal and laryngeal motor responses to hypercapnia/acidosis. A6 neurons provide excitatory synaptic drive contributing to the central generation of inspiratory and expiratory motor activity as well as the control of upper airway resistance. ABSTRACT: During rest, inspiration is an active phenomenon, whereas expiration is passive. Under conditions of high chemical drive, such as hypercapnia/acidosis, there is an increase in inspiratory activity, expiration becomes active and upper airway resistance is reduced. The locus coeruleus noradrenergic neurons (A6 neurons) are activated when exposed to elevated CO2 /[H+ ] levels and modulate respiratory brainstem neurons regulating ventilation. However, the role of A6 neurons in the control of upper airway resistance is not fully understood. We tested the hypothesis that A6 neurons contribute to the central generation of active inspiratory and expiratory responses and the associated changes in the motor nerves controlling upper airway resistance during hypercapnia/acidosis in rats. Using a perfused brainstem-spinal cord preparation, we inhibited A6 neurons using pharmacogenetics and evaluated the active expiratory (abdominal nerve), laryngeal (cervical vagus nerve), oropharyngeal (hypoglossal nerve) and inspiratory (phrenic nerve) motor nerve responses to hypercapnia/acidosis. Acute inhibition of A6 neurons did not produce significant changes in the respiratory pattern in normocapnia. However, the hypercapnia/acidosis-induced active expiratory response and the associated changes in the motor nerves responsible for control of oropharyngeal and laryngeal resistance, as well as the inspiratory response were all reduced after inhibition of A6 neurons. Our data demonstrate that A6 neurons exert an important excitatory synaptic drive to the central generation of both active inspiratory and expiratory activities and modulate the control of upper airway resistance during hypercapnia/acidosis.


Asunto(s)
Acidosis/fisiopatología , Resistencia de las Vías Respiratorias , Espiración , Hipercapnia/fisiopatología , Neuronas/fisiología , Animales , Tronco Encefálico/citología , Nervio Hipogloso/fisiología , Masculino , Nervio Frénico/fisiología , Ratas , Ratas Wistar , Médula Espinal/citología , Transfección , Nervio Vago/fisiología
4.
Exp Physiol ; 105(2): 379-392, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31820827

RESUMEN

NEW FINDINGS: What is the central question of this study? Does the parafacial respiratory group (pFRG), which mediates active expiration, recruit nasofacial and oral motoneurons to coordinate motor activities that engage muscles controlling airways in rats during active expiration. What is the main finding and its importance? Hypercapnia/acidosis or pFRG activation evoked active expiration and stimulated the motoneurons and nerves responsible for the control of nasofacial and oral airways patency simultaneously. Bilateral pFRG inhibition abolished active expiration and the simultaneous nasofacial and oral motor activities induced by hypercapnia/acidosis. The pFRG is more than a rhythmic oscillator for expiratory pump muscles: it also coordinates nasofacial and oral motor commands that engage muscles controlling airways. ABSTRACT: Active expiration is mediated by an expiratory oscillator located in the parafacial respiratory group (pFRG). Active expiration requires more than contracting expiratory muscles as multiple cranial nerves are recruited to stabilize the naso- and oropharyngeal airways. We tested the hypothesis that activation of the pFRG recruits facial and trigeminal motoneurons to coordinate nasofacial and oral motor activities that engage muscles controlling airways in rats during active expiration. Using a combination of electrophysiological and pharmacological approaches, we identified brainstem circuits that phase-lock active expiration, nasofacial and oral motor outputs in an in situ preparation of rat. We found that either high chemical drive (hypercapnia/acidosis) or unilateral excitation (glutamate microinjection) of the pFRG evoked active expiration and stimulated motoneurons (facial and trigeminal) and motor nerves responsible for the control of nasofacial (buccal and zygomatic branches of the facial nerve) and oral (mylohyoid nerve) motor outputs simultaneously. Bilateral pharmacological inhibition (GABAergic and glycinergic receptor activation) of the pFRG abolished active expiration and the simultaneous nasofacial and oral motor activities induced by hypercapnia/acidosis. We conclude that the pFRG provides the excitatory drive to phase-lock rhythmic nasofacial and oral motor circuits during active expiration in rats. Therefore, the pFRG is more than a rhythmic oscillator for expiratory pump muscles: it also coordinates nasofacial and oral motor commands that engage muscles controlling airways in rats during active expiration.


Asunto(s)
Espiración/fisiología , Músculos Faciales/fisiología , Actividad Motora/fisiología , Neuronas Motoras/fisiología , Cavidad Nasal/fisiología , Centro Respiratorio/fisiología , Animales , Músculos Faciales/inervación , Masculino , Boca/inervación , Boca/fisiología , Cavidad Nasal/inervación , Ratas , Ratas Wistar
5.
Sci Rep ; 8(1): 15654, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30353035

RESUMEN

At rest, inspiration is an active process while expiration is passive. However, high chemical drive (hypercapnia or hypoxia) activates central and peripheral chemoreceptors triggering reflex increases in inspiration and active expiration. The Locus Coeruleus contains noradrenergic neurons (A6 neurons) that increase their firing frequency when exposed to hypercapnia and hypoxia. Using recently developed neuronal hyperpolarising technology in conscious rats, we tested the hypothesis that A6 neurons are a part of a vigilance centre for controlling breathing under high chemical drive and that this includes recruitment of active inspiration and expiration in readiness for flight or fight. Pharmacogenetic inhibition of A6 neurons was without effect on resting and on peripheral chemoreceptors-evoked inspiratory, expiratory and ventilatory responses. On the other hand, the number of sighs evoked by systemic hypoxia was reduced. In the absence of peripheral chemoreceptors, inhibition of A6 neurons during hypercapnia did not affect sighing, but reduced both the magnitude and incidence of active expiration, and the frequency and amplitude of inspiration. These changes reduced pulmonary ventilation. Our data indicated that A6 neurons exert a CO2-dependent modulation of expiratory drive. The data also demonstrate that A6 neurons contribute to the CO2-evoked increases in the inspiratory motor output and hypoxia-evoked sighing.


Asunto(s)
Locus Coeruleus/fisiología , Respiración , Neuronas Adrenérgicas/patología , Neuronas Adrenérgicas/fisiología , Animales , Dióxido de Carbono/metabolismo , Espiración , Hipercapnia/metabolismo , Hipercapnia/fisiopatología , Hipoxia/metabolismo , Hipoxia/fisiopatología , Inhalación , Locus Coeruleus/fisiopatología , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA