RESUMEN
For many vertebrate species, bite force plays an important functional role. Ecological characteristics of a species' niche, such as diet, are often associated with bite force. Previous evidence suggests a biomechanical trade-off between rodents specialized for gnawing, which feed mainly on seeds, and those specialized for chewing, which feed mainly on green vegetation. We tested the hypothesis that gnawers are stronger biters than chewers. We estimated bite force and measured skull and mandible shape and size in 63 genera of a major rodent radiation (the myomorph sigmodontines). Analysis of the influence of diet on bite force and morphology was made in a comparative framework. We then used phylogenetic path analysis to uncover the most probable causal relationships linking diet and bite force. Both granivores (gnawers) and herbivores (chewers) have a similar high bite force, leading us to reject the initial hypothesis. Path analysis reveals that bite force is more likely influenced by diet than the reverse causality. The absence of a trade-off between herbivores and granivores may be associated with the generalist nature of the myomorph condition seen in sigmodontine rodents. Both gnawing and chewing sigmodontines exhibit similar, intermediate phenotypes, at least compared to extreme gnawers (squirrels) and chewers (chinchillas). Only insectivorous rodents appear to be moving towards a different direction in the shape space, through some notable changes in morphology. In terms of diet, natural selection alters bite force through changes in size and shape, indicating that organisms adjust their bite force in tandem with changes in food items.
Asunto(s)
Evolución Biológica , Fuerza de la Mordida , Dieta , Roedores/anatomía & histología , Animales , Fenómenos Biomecánicos , Filogenia , CráneoRESUMEN
Ontogenetic allometry is the study of how the size or shape of certain structures changes over the course of an animal's development. In this study, using Huxley's formula of allometric growth (1932), we assessed the changes in the rate of growth of the feet size of the sigmodontine rodent Oligoryzomys flavescens during its ontogeny and compared differences between males and females. We find evidence of a change of polarity during the ontogenetic development of the species, with the presence of positive allometry during pregnancy and negative allometry in adulthood. Moreover, we note the presence of sexual dimorphism in the size of the feet, in which males of the species have a higher rate of growth than females. This growth pattern is positively related to escape from predators in childhood in both sexes and, in adulthood, provides a higher encounter rate of females by males, due to the larger displacement of the latter. We suggest that both the forces of natural selection and sexual selection have acted to shape the evolution of foot size in this species.
Asunto(s)
Tamaño Corporal , Pie/anatomía & histología , Caracteres Sexuales , Sigmodontinae/anatomía & histología , Animales , Biometría , Femenino , Masculino , EmbarazoRESUMEN
Ontogenetic allometry is the study of how the size or shape of certain structures changes over the course of an animal’s development. In this study, using Huxley's formula of allometric growth (1932), we assessed the changes in the rate of growth of the feet size of the sigmodontine rodent Oligoryzomys flavescens during its ontogeny and compared differences between males and females. We find evidence of a change of polarity during the ontogenetic development of the species, with the presence of positive allometry during pregnancy and negative allometry in adulthood. Moreover, we note the presence of sexual dimorphism in the size of the feet, in which males of the species have a higher rate of growth than females. This growth pattern is positively related to escape from predators in childhood in both sexes and, in adulthood, provides a higher encounter rate of females by males, due to the larger displacement of the latter. We suggest that both the forces of natural selection and sexual selection have acted to shape the evolution of foot size in this species.
A alometria ontogenética estuda como o tamanho ou forma de determinada estrutura muda ao longo do desenvolvimento. Neste estudo, através da fórmula do crescimento alométrico de Huxley (1932), acessamos as variações na taxa de crescimento do tamanho dos pés do roedor sigmodontineo Oligoryzomys flavescens, ao longo de sua ontogenia e entre machos e fêmeas. Nós encontramos evidência de uma mudança de polaridade ontogenética ao longo do desenvolvimento da espécie, com presença de alometria positiva na fase gestacional, e alometria negativa na fase adulta. Além disso, constatamos a presença de dimorfismo sexual no tamanho dos pés, onde machos da espécie apresentam uma maior taxa de crescimento nesta característica em comparação com as fêmeas. Esse padrão de crescimento deve estar positivamente relacionado com a fuga de predadores na infância em ambos os sexos, e na vida adulta propicia uma maior taxa de encontro de fêmeas pelos machos, devido ao maior deslocamento destes últimos. Sugerimos que tanto as forças da seleção natural quanto da seleção sexual tem atuado para moldar a evolução do tamanho dos pés nesta espécie.
Asunto(s)
Animales , Femenino , Masculino , Embarazo , Tamaño Corporal , Pie/anatomía & histología , Caracteres Sexuales , Sigmodontinae/anatomía & histología , BiometríaRESUMEN
Ontogenetic allometry is the study of how the size or shape of certain structures changes over the course of an animals development. In this study, using Huxley's formula of allometric growth (1932), we assessed the changes in the rate of growth of the feet size of the sigmodontine rodent Oligoryzomys flavescens during its ontogeny and compared differences between males and females. We find evidence of a change of polarity during the ontogenetic development of the species, with the presence of positive allometry during pregnancy and negative allometry in adulthood. Moreover, we note the presence of sexual dimorphism in the size of the feet, in which males of the species have a higher rate of growth than females. This growth pattern is positively related to escape from predators in childhood in both sexes and, in adulthood, provides a higher encounter rate of females by males, due to the larger displacement of the latter. We suggest that both the forces of natural selection and sexual selection have acted to shape the evolution of foot size in this species.(AU)
A alometria ontogenética estuda como o tamanho ou forma de determinada estrutura muda ao longo do desenvolvimento. Neste estudo, através da fórmula do crescimento alométrico de Huxley (1932), acessamos as variações na taxa de crescimento do tamanho dos pés do roedor sigmodontineo Oligoryzomys flavescens, ao longo de sua ontogenia e entre machos e fêmeas. Nós encontramos evidência de uma mudança de polaridade ontogenética ao longo do desenvolvimento da espécie, com presença de alometria positiva na fase gestacional, e alometria negativa na fase adulta. Além disso, constatamos a presença de dimorfismo sexual no tamanho dos pés, onde machos da espécie apresentam uma maior taxa de crescimento nesta característica em comparação com as fêmeas. Esse padrão de crescimento deve estar positivamente relacionado com a fuga de predadores na infância em ambos os sexos, e na vida adulta propicia uma maior taxa de encontro de fêmeas pelos machos, devido ao maior deslocamento destes últimos. Sugerimos que tanto as forças da seleção natural quanto da seleção sexual tem atuado para moldar a evolução do tamanho dos pés nesta espécie.(AU)
Asunto(s)
Animales , Masculino , Femenino , Embarazo , Tamaño Corporal , Pie/anatomía & histología , Caracteres Sexuales , Sigmodontinae/anatomía & histología , BiometríaRESUMEN
This paper presents a physical evaluation of an upflow anaerobic sludge blanket reactor. Specifically, the study contemplates the region influenced by the wastewater inlet jets at the bottom of the reactor, here termed the near-field area. A three-dimensional physical model of a UASB reactor in reduced scale, geometrically and dynamically correlated to a full-scale prototype was used in the evaluation. From the analysis of the major forces acting and of the physical properties investigated in the prototype, it was possible to establish non-dimensional relations that were applied to the reduced scale model, allowing the investigation of the phenomenon of interest. Tests were developed on the model to visualise the inlet flows under the buoyant effect at the bottom of the reactor, through the injection of a tracer fluid in the area with higher density, simulating the effects of the sludge bed. Based on the experimental results, it was possible to provide dimensioning criteria for the jet distribution system in UASB reactors.