Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 7(47): 26275-83, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26575590

RESUMEN

Density-functional theory molecular dynamics simulations were employed to investigate direct interfaces between a-Al2O3 and Si0.50Ge0.50 with Si- and Ge-terminations. The simulated stacks revealed mixed interfacial bonding. While Si-O and Ge-O bonds are unlikely to be problematic, bonding between Al and Si or Ge could result in metallic bond formation; however, the internal bonds of a-Al2O3 are sufficiently strong to allow just weak Al bonding to the SiGe surface thereby preventing formation of metallic-like states but leave dangling bonds. The oxide/SiGe band gaps were unpinned and close to the SiGe bulk band gap. The interfaces had SiGe dangling bonds, but they were sufficiently filled that they did not produce midgap states. Capacitance-voltage (C-V) spectroscopy and angle-resolved X-ray photoelectron spectroscopy experimentally confirmed formation of interfaces with low interface trap density via direct bonding between a-Al2O3 and SiGe.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA