Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 13(7)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39061902

RESUMEN

Vitis vinifera L. is a natural source of bioactive compounds that is already used for cosmeceutical and nutraceutical approaches. However, their phytochemical and antioxidant properties, although studied, have not been fully explored. We aimed to characterize V. vinifera L. cv. Falanghina seed extracts in different polarity solvents (hexane, ethyl acetate, ethanol, and a mixture of acetone-water) for their phytochemical contents, including the total phenolic compound content (TPC), free radical scavenging capacities, and antioxidant ability on HepG2 cells. We directly profiled the functional quality of V. vinifera seed extracts against H2O2-induced oxidative stress in HepG2 cells, focusing on mitochondrial functions. The content of bioactive compounds was characterized by LC-MS. To assess the cytocompatibility of the extracts, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was conducted. Results showed that extraction with ethyl acetate (18.12 mg GAE·g-1) and ethanol solvents (18.07 mg GAE·g-1), through Soxhlet, and with an acetone-water mixture (14.17 mg GAE·g-1), through maceration, yielded extracts rich in (poly)phenols, with good scavenging and antioxidant activity (98.32 I% for ethanol solvents and 96.31 I% for acetone-water mixture). The antioxidant effect of polyphenols is at least partially due to their capacity to maintain mitochondrial biogenesis and mitophagy, which elevates mitochondrial efficiency, resulting in diminished ROS production, hence re-establishing the mitochondrial quality control. These findings highlight the valorization of Vitis by-products to improve food functional characteristics.

2.
Sci Rep ; 14(1): 10182, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702382

RESUMEN

Progressive cartilage deterioration leads to chronic inflammation and loss of joint function, causing osteoarthritis (OA) and joint disease. Although symptoms vary among individuals, the disease can cause severe pain and permanent disability, and effective therapies are urgently needed. Human Adipose-Derived Stem Cells (ADSCs) may differentiate into chondrocytes and are promising for treating OA. Moreover, recent studies indicate that electromagnetic fields (EMFs) could positively affect the chondrogenic differentiation potential of ADSCs. In this work, we investigated the impact of EMFs with frequencies of 35 Hertz and 58 Hertz, referred to as extremely low frequency-EMFs (ELF-EMFs), on the chondrogenesis of ADSCs, cultured in both monolayer and 3D cell micromasses. ADSC cultures were daily stimulated for 36 min with ELF-EMFs or left unstimulated, and the progression of the differentiation process was evaluated by morphological analysis, extracellular matrix deposition, and gene expression profiling of chondrogenic markers. In both culturing conditions, stimulation with ELF-EMFs did not compromise cell viability but accelerated chondrogenesis by enhancing the secretion and deposition of extracellular matrix components at earlier time points in comparison to unstimulated cells. This study showed that, in an appropriate chondrogenic microenvironment, ELF-EMFs enhance chondrogenic differentiation and may be an important tool for supporting and accelerating the treatment of OA through autologous adipose stem cell therapy.


Asunto(s)
Tejido Adiposo , Diferenciación Celular , Condrogénesis , Campos Electromagnéticos , Células Madre Mesenquimatosas , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Tejido Adiposo/citología , Células Cultivadas , Condrocitos/citología , Condrocitos/metabolismo , Matriz Extracelular/metabolismo , Supervivencia Celular/efectos de la radiación
3.
Biochem Pharmacol ; 222: 116097, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38428827

RESUMEN

OBJECTIVES: Chemoprevention, consisting of the administration of natural and/or synthetic compounds, appears to be an alternative way to common therapeutical approaches to preventing the occurrence of various cancers. Cladosporols, secondary metabolites from Cladosporium tenuissimum, showed a powerful ability in controlling human colon cancer cell proliferation through a peroxisome proliferator-activated receptor gamma (PPARγ)-mediated modulation of gene expression. Hence, we carried out experiments to verify the anticancer properties of cladosporols in human prostate cancer cells. Prostate cancer represents one of the most widespread tumors in which several risk factors play a role in determining its high mortality rate in men. MATERIALS AND METHODS: We assessed, by viability assays, PPARγ silencing and overexpression experiments and western blotting analysis, the anticancer properties of cladosporols in cancer prostate cell lines. RESULTS: Cladosporols A and B selectively inhibited the proliferation of human prostate PNT-1A, LNCaP and PC-3 cells and their most impactful antiproliferative ability towards PC-3 prostate cancer cells, was mediated by PPARγ modulation. Moreover, the anticancer ability of cladosporols implied a sustained apoptosis. Finally, cladosporols negatively regulated the expression of enzymes involved in the biosynthesis of fatty acids and cholesterol, thus enforcing the relationship between prostate cancer development and lipid metabolism dysregulation. CONCLUSION: This is the first work, to our knowledge, in which the role of cladosporols A and B was disclosed in prostate cancer cells. Importantly, the present study highlighted the potential of cladosporols as new therapeutical tools, which, interfering with cell proliferation and lipid pathway dysregulation, may control prostate cancer initiation and progression.


Asunto(s)
Naftalenos , PPAR gamma , Neoplasias de la Próstata , Masculino , Humanos , PPAR gamma/metabolismo , Células PC-3 , Neoplasias de la Próstata/metabolismo , Apoptosis , Proliferación Celular , Lípidos , Línea Celular Tumoral
4.
Front Immunol ; 13: 833085, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35634315

RESUMEN

In the COVID-19 pandemic year 2021, several countries have implemented a vaccine certificate policy, the "Green Pass Policy" (GPP), to reduce virus spread and to allow safe relaxation of COVID-19 restrictions and reopening of social and economic activities. The rationale for the GPP is based on the assumption that vaccinated people should maintain a certain degree of immunity to SARS-CoV-2. Here we describe and compare, for the first time, the humoral immune response to mRNA-1273, BNT162b2, Ad26.COV2.S, and ChAdOx1 nCoV-19 vaccines in terms of antibody titer elicited, neutralizing activity, and epitope reactogenicity among 369 individuals aged 19 to 94 years. In parallel, we also considered the use of a rapid test for the determination of neutralizing antibodies as a tool to guide policymakers in defining booster vaccination strategies and eligibility for Green Pass. Our analysis demonstrates that the titer of antibodies directed towards the receptor-binding domain (RBD) of SARS-CoV-2 Spike is significantly associated with age and vaccine type. Moreover, natural COVID-19 infection combined with vaccination results, on average, in higher antibody titer and higher neutralizing activity as compared to fully vaccinated individuals without prior COVID-19. We also found that levels of anti-Spike RBD antibodies are not always strictly associated with the extent of inhibition of RBD-ACE2 binding, as we could observe different neutralizing activities in sera with similar anti-RBD concentrations. Finally, we evaluated the reactivity to four synthetic peptides derived from Spike protein on a randomly selected serum sample and observed that similar to SARS-CoV-2 infection, vaccination elicits a heterogeneous antibody response with qualitative individual features. On the basis of our results, the use of rapid devices to detect the presence of neutralizing antibodies, even on a large scale and repeatedly over time, appears helpful in determining the duration of the humoral protection elicited by vaccination. These aspects and their implications for the GPP are discussed.


Asunto(s)
COVID-19 , Vacunas Virales , Ad26COVS1 , Animales , Anticuerpos Neutralizantes , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , ChAdOx1 nCoV-19 , Humanos , Inmunidad Humoral , Ratones , Ratones Endogámicos BALB C , Pandemias , Políticas , SARS-CoV-2
5.
Diagnostics (Basel) ; 12(3)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35328203

RESUMEN

Molecular tests are the gold standard to diagnose severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection but are associated with a diagnostic delay, while antigen detection tests can generate results within 20 min even outside a laboratory. In order to evaluate the accuracy and reliability of the FAST COVID-19 SARS-CoV-2 Antigen Rapid Test Kit (Ag-RDT), two respiratory swabs were collected simultaneously from 501 patients, with mild or no coronavirus disease 2019 (COVID-19)-related symptoms, and analyzed with both the Reverse Transcriptase-quantitative Polymerase Chain Reaction (RT-qPCR) and the FAST COVID-19 SARS-CoV-2 Antigen Rapid Test. Results were then compared to determine clinical performance in a screening setting. We measured a precision of 97.41% (95% CI 92.42-99.15%) and a recall of 98.26% (95% CI 93.88-99.25%), with a specificity of 99.22% (95% CI 97.74-99.74%), a negative predictive value of 99.48% (95% CI 97.98-99.87%), and an overall accuracy of 99.00% (95% CI 97.69-99.68%). Concordance was described by a Kappa coefficient of 0.971 (95% CI 0.947-0.996). Considering short lead times, low cost, and opportunities for decentralized testing, the Ag-RDT test can enhance the efforts to control SARS-CoV-2 spread in several settings.

6.
Genes Dis ; 9(1): 275-281, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33564711

RESUMEN

SARS-CoV-2 virus is responsible for the current worldwide coronavirus disease 2019 (COVID-19) pandemic, infecting millions of people and causing hundreds of thousands of deaths. Understanding the antibody response to SARS-CoV-2 is crucial for the development of vaccines, therapeutics and public health interventions. However, lack of consistency in methods used to monitor antibody response to SARS-CoV-2 leaves some uncertainty in our fine understanding of the human antibody response mounted following SARS-CoV-2 infection. We developed a peptide-based enzyme-linked immunosorbent assay (ELISA) by selecting 7 synthetic peptides from the spike, membrane, and nucleocapsid protein sequences of SARS-CoV-2, which effectively detects the antibody response mounted by all COVID-19 convalescent tested. Strikingly, the assay shows a profound difference in antibody response among individual subjects, which may have a significant impact on disease severity. Together, our results define an efficient and specific serological assay to consistently measure the antibody response following SARS-CoV-2 infection, as well as help the design of vaccine and therapeuticals for prevention and treatment of COVID-19.

7.
Microb Biotechnol ; 15(5): 1422-1433, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34773386

RESUMEN

The use of medical devices, such as contact lenses, represents a substantial risk of infection, as they can act as scaffolds for formation of microbial biofilms. Recently, the increasing emergency of antibiotic resistance has prompted the development of novel and effective antimicrobial drugs for biofilm treatment, such as oxidizing agents. The purpose of this study is to investigate the effects of Ozodrop® and Ozodrop® gel, commercial names of ozonated oil in liposomes plus hypromellose, on eradication and de novo formation of biofilms on different supports, such as plastic plates and contact lens. Our results demonstrate that ozonated liposomal sunflower oil plus hypromellose have an excellent inhibitory effect on bacterial viability and on both de novo formation and eradication of biofilms produced on plates and contact lens by Pseudomonas aeruginosa and Staphylococcus aureus. Moreover, we show that Ozodrop® formulations stimulate expression of antimicrobial peptides and that Ozodrop® gel has a strong repair activity on human epithelial cells, suggesting further applications for the treatment of non-healing infected wounds.


Asunto(s)
Liposomas , Pseudomonas aeruginosa , Antibacterianos/farmacología , Biopelículas , Humanos , Derivados de la Hipromelosa/farmacología , Liposomas/farmacología , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus
8.
Vaccines (Basel) ; 9(9)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34579224

RESUMEN

The coronavirus disease 2019 (COVID-19) mRNA vaccine developed by Pfizer/BioNTech has been shown to be capable of developing an excellent antibody response against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein, with good production of neutralizing antibodies. Herein, we analyzed differences in the antibody response elicited by inoculation of the Pfizer/BioNTech vaccine through a peptide-based enzyme-linked immunosorbent assay (ELISA) that utilizes synthetic peptides derived from the spike protein in the immuno-adsorbent phase. Immunoreactivity against synthetic peptides was measured at different time points from vaccination and was also correlated with the SARS-CoV-2 neutralizing capacity. Our results indicate that all vaccinated subjects except one show reactive antibodies to at least one peptide at both 30 and 60 days after injection of the first dose. Only one of the 19 analyzed subjects showed no antibody response toward any of the selected peptides, consistently with a lower neutralizing capacity. More importantly, our data showed that the antibody response elicited by inoculation of the two doses of the Pfizer vaccine appears to be qualitatively individual, both in the type of recognized peptides and in the temporal persistence of the antibody response. Together with previous published data, our findings suggest that for effective pandemic control, it is important to constantly monitor the antibody protection in the population, and the assay described here could be a valid tool for this purpose.

9.
Diagnostics (Basel) ; 11(7)2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34206932

RESUMEN

Since the beginning of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic, it has been clear that testing large groups of the population was the key to stem infection and prevent the effects of the coronavirus disease of 2019, mostly among sensitive patients. On the other hand, time and cost-sustainability of virus detection by molecular analysis such as reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) may be a major issue if testing is extended to large communities, mainly asymptomatic large communities. In this context, sample-pooling and test grouping could offer an effective solution. Here we report the screening on 1195 oral-nasopharyngeal swabs collected from students and staff of the Università degli Studi del Sannio (University of Sannio, Benevento, Campania, Italy) and analyzed by an in-house developed multiplex RT-qPCR for SARS-CoV-2 detection through a simple monodimensional sample pooling strategy. Overall, 400 distinct pools were generated and, within 24 h after swab collection, five positive samples were identified. Out of them, four were confirmed by using a commercially available kit suitable for in vitro diagnostic use (IVD). High accuracy, sensitivity and specificity were also determined by comparing our results with a reference IVD assay for all deconvoluted samples. Overall, we conducted 463 analyses instead of 1195, reducing testing resources by more than 60% without lengthening diagnosis time and without significant losses in sensitivity, suggesting that our strategy was successful in recognizing positive cases in a community of asymptomatic individuals with minor requirements of reagents and time when compared to normal testing procedures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA