Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemistry ; 29(43): e202301359, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37350524

RESUMEN

We explored a bioorthogonal approach to release drugs from stimuli-responsive micelles inside tumor cells. The concept relies on sydnonimine-based micelles that undergo quantitative cleavage in presence of cyclooctynes, hence releasing their content within living cells. Four cleavable micelles were developed to allow massive burst release of Entinostat, a potent histone deacetylase inhibitor, following their internalization inside cancer cells. A comparative study on the influence of the bioorthogonal-mediated versus passive drug release from micelles was carried out. The results indicated that a fast release of the drug triggered a stronger antiproliferative activity on tumor cells compared to the passive diffusion of the drug from the micelles core. These finding may be of great interest for the development of new nanomedicines.


Asunto(s)
Micelas , Nanopartículas , Liberación de Fármacos , Portadores de Fármacos , Doxorrubicina/farmacología , Concentración de Iones de Hidrógeno
2.
J Am Chem Soc ; 145(4): 2219-2229, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36656821

RESUMEN

Bioorthogonal click-and-release reactions are powerful tools for chemical biology, allowing, for example, the selective release of drugs in biological media, including inside animals. Here, we developed two new families of iminosydnone mesoionic reactants that allow a bioorthogonal release of electrophilic species under physiological conditions. Their synthesis and reactivities as dipoles in cycloaddition reactions with strained alkynes have been studied in detail. Whereas the impact of the pH on the reaction kinetics was demonstrated experimentally, theoretical calculations suggest that the newly designed dipoles display reduced resonance stabilization energies compared to previously described iminosydnones, explaining their higher reactivity. These mesoionic compounds react smoothly with cycloalkynes under physiological, copper-free reaction conditions to form a click pyrazole product together with a released alkyl- or aryl-isocyanate. With rate constants up to 1000 M-1 s-1, this click-and-release reaction is among the fastest described to date and represents the first bioorthogonal process allowing the release of isocyanate electrophiles inside living cells, offering interesting perspectives in chemical biology.


Asunto(s)
Cicloparafinas , Animales , Reacción de Cicloadición , Alquinos/química , Química Clic , Azidas/química
3.
Chem Commun (Camb) ; 58(61): 8500-8503, 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35797662

RESUMEN

Herein, we describe a methodology for iminosydnone chlorination and we demonstrate the high beneficial effect of this modification on the reactivity of these mesoionic dipoles in strain-promoted cycloaddition reactions. Exploiting their reaction with cyclooctynes, we used these new iminosydnones for bioorthogonal release of amide, urea and sulfonamide containing drugs. Notably, drugs containing a terminal amide function were released for the first time with good kinetic constants.


Asunto(s)
Amidas , Halogenación , Reacción de Cicloadición , Sulfonamidas , Urea
4.
Org Biomol Chem ; 19(26): 5844-5866, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34115086

RESUMEN

The straightforward synthesis of aminoribosyl uridines substituted by a 5'-methylene-urea is described. Their convergent synthesis involves the urea formation from various activated amides and an azidoribosyl uridine substituted at the 5' position by an aminomethyl group. This common intermediate resulted from the diastereoselective glycosylation of a phthalimido uridine derivative with a ribosyl fluoride as a ribosyl donor. The inhibition of the MraY transferase activity by the synthetized 11 urea-containing inhibitors was evaluated and 10 compounds revealed MraY inhibition with IC50 ranging from 1.9 µM to 16.7 µM. Their antibacterial activity was also evaluated on a panel of Gram-positive and Gram-negative bacteria. Four compounds exhibited a good activity against Gram-positive bacterial pathogens with MIC ranging from 8 to 32 µg mL-1, including methicillin resistant Staphylococcus aureus (MRSA) and Enterococcus faecium. Interestingly, one compound also revealed antibacterial activity against Pseudomonas aeruginosa with MIC equal to 64 µg mL-1. Docking experiments predicted two modes of positioning of the active compounds urea chain in different hydrophobic areas (HS2 and HS4) within the MraY active site from Aquifex aeolicus. However, molecular dynamics simulations showed that the urea chain adopts a binding mode similar to that observed in structural model and targets the hydrophobic area HS2.


Asunto(s)
Antibacterianos
5.
Org Lett ; 22(6): 2403-2408, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32155081

RESUMEN

A new methodology for N-exocyclic functionalization of iminosydnones was developed involving the addition of a large variety of nucleophiles on carbonyl-imidazolium-activated iminosydnones. This practical and highly versatile method provided access to new classes of iminosydnones and opened a straightforward synthetic route to prepare iminosydnone-based prodrugs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA