Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Chem Soc Rev ; 51(8): 3243-3262, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35363235

RESUMEN

Nuclear power will continue to provide energy for the foreseeable future, but it can pose significant challenges in terms of the disposal of waste and potential release of untreated radioactive substances. Iodine is a volatile product from uranium fission and is particularly problematic due to its solubility. Different isotopes of iodine present different issues for people and the environment. 129I has an extremely long half-life of 1.57 × 107 years and poses a long-term environmental risk due to bioaccumulation. In contrast, 131I has a shorter half-life of 8.02 days and poses a significant risk to human health. There is, therefore, an urgent need to develop secure, efficient and economic stores to capture and sequester ionic and neutral iodine residues. Metal-organic framework (MOF) materials are a new generation of solid sorbents that have wide potential applicability for gas adsorption and substrate binding, and recently there is emerging research on their use for the selective adsorptive removal of iodine. Herein, we review the state-of-the-art performance of MOFs for iodine adsorption and their host-guest chemistry. Various aspects are discussed, including establishing structure-property relationships between the functionality of the MOF host and iodine binding. The techniques and methodologies used for the characterisation of iodine adsorption and of iodine-loaded MOFs are also discussed together with strategies for designing new MOFs that show improved performance for iodine adsorption.


Asunto(s)
Yodo , Estructuras Metalorgánicas , Adsorción , Humanos , Iones , Estructuras Metalorgánicas/química
2.
Eng. sanit. ambient ; 23(5): 995-1000, set.-out. 2018. tab
Artículo en Portugués | LILACS | ID: biblio-975144

RESUMEN

RESUMO Áreas contaminadas por metais podem configurar sério risco à saúde pública e ao meio ambiente. Na década de 1980 foi instalado um pátio de estocagem provisória de resíduos industriais perigosos (CENTRES), no município de Queimados, Rio de Janeiro, o que causou um grande impacto ambiental ao solo da região. A legislação brasileira para o diagnóstico de áreas contaminadas limita a extração de metais em solos aos métodos recomendados pela United States Environmental Protection Agency (USEPA) 3050 e 3051A. Entretanto, muitos pesquisadores utilizam o método com água-régia para a extração de metais em solo, mas são escassos estudos que comparem as concentrações de metais extraídos por água-régia e USEPA 3051A. Logo, o objetivo deste trabalho foi avaliar se o método de extração de metais em solos por água-régia é estatisticamente diferente do método USEPA 3051A. Os resultados obtidos revelaram que as concentrações de Cd, Cr, Cu, Ni, Pb e Zn utilizando ambas as extrações (água-régia e USEPA 3051A) foram estatisticamente semelhantes. Também foi possível identificar que as concentrações de Cu, Ni, Pb e Zn foram superiores ao valor de investigação industrial, o que caracteriza essa área como altamente contaminada e solo classe 4.


ABSTRACT Metal contaminated areas lead to environmental and public health risks. In the 1980s, dangerous industrial waste storage was initiated in the CENTRES area in the municipality of Queimados, Rio de Janeiro, Brazil. The inadequate management of these wastes has promoted a large environmental impact to this region's soils. The Brazilian legislation for diagnostics of contaminated areas limits the extraction of metals on soils to USEPA 3050-B and USEPA 3051-A methods. However, many researchers use the aqua regia method for extracting metals in soil, but there are few studies comparing concentrations of metals extracted by aqua regia and USEPA 3051A. Therefore, the objective of this work was to evaluate if the method of extracting metals in soils by aqua regia is statistically different from US EPA 3051A. The results showed that the Cd, Cr, Cu, Ni, Pb and Zn concentrations using both extractions were statistically similar. It was also observed that Cu, Ni, Pb and Zn concentrations were higher than the industrial investigation value which characterizes this area as highly contaminated and soil class 4.

3.
An. acad. bras. ciênc ; 73(2): 277-286, June 2001. tab
Artículo en Inglés | LILACS | ID: lil-285543

RESUMEN

The Camaquä Copper Mines (CCM) were the main sulphide deposit in Southern Brazil and have been in operation from last century to 1996. To evaluate water contamination and environmental risk increase by heavy metals from mining operations, two points on the Joäo Dias Creek were sampled (Station 1, background area and Station 2, contaminated area). Mining activity increased the natural weakly heavy metal fluxes by approximately 5424 kg. ( ~ 60 percent) of the total metal flux, 1542 kg. ( ~ 49 percent) of dissolved and 3881 kg ( ~ 66 percent) of particulate metal flux. Total metal flux of anthropic origin was mostly due to Fe followed by Cu > Zn > Mn whereas Cd, As and Pb fluxes were negligible. The potential human health hazards and risk assessment related to daily intake of water from Joäo Dias Creek are mostly due to Mn and should be of concern for the contaminated area. The ingestion of water from station 2 represents incremental risks of 130 percent and 59 percent respectively, considering the non-carcinogenic and the carcinogenic effects. The real increase of human health hazards may be greater than those related to the total concentrations since Mn and As dissolved concentrations were 5.5 and 2.0 higher than acceptable, respectively


Asunto(s)
Humanos , Exposición a Riesgos Ambientales/efectos adversos , Metales Pesados/efectos adversos , Minería , Contaminantes Químicos del Agua/efectos adversos , Brasil , Cobre/efectos adversos , Cobre/análisis , Metales Pesados/análisis , Medición de Riesgo , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA