Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Comput Assist Surg (Abingdon) ; 29(1): 2403444, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39301766

RESUMEN

Catheter-based intervention procedures contain complex maneuvers, and they are often performed using fluoroscopic guidance assisted by 2D and 3D echocardiography viewed on a flat screen that inherently limits depth perception. Emerging mixed reality (MR) technologies, combined with advanced rendering techniques, offer potential enhancement in depth perception and navigational support. The study aims to evaluate a MR-based guidance system for the atrial septal puncture (ASP) procedure utilizing a phantom anatomical model. A novel MR-based guidance system using a modified Monte Carlo-based rendering approach for 3D echocardiographic visualization was introduced and evaluated against standard clinical 3D echocardiographic display on a flat screen. The objective was to guide the ASP procedure by facilitating catheter placement and puncture across four specific atrial septum quadrants. To assess the system's feasibility and performance, a user study involving four experienced interventional cardiologists was conducted using a phantom model. Results show that participants accurately punctured the designated quadrant in 14 out of 16 punctures using MR and 15 out of 16 punctures using the flat screen of the ultrasound machine. The geometric mean puncture time for MR was 31 s and 26 s for flat screen guidance. User experience ratings indicated MR-based guidance to be easier to navigate and locate tents of the atrial septum. The study demonstrates the feasibility of MR-guided atrial septal puncture. User experience data, particularly with respect to navigation, imply potential benefits for more complex procedures and educational purposes. The observed performance difference suggests an associated learning curve for optimal MR utilization.


Asunto(s)
Tabique Interatrial , Ecocardiografía Tridimensional , Método de Montecarlo , Fantasmas de Imagen , Punciones , Humanos , Tabique Interatrial/diagnóstico por imagen , Ecocardiografía Tridimensional/métodos , Cirugía Asistida por Computador/métodos , Cateterismo Cardíaco/métodos , Realidad Aumentada , Ultrasonografía Intervencional/métodos
3.
Emerg Radiol ; 31(1): 25-31, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38066242

RESUMEN

PURPOSE: Teleultrasound uses telecommunication technologies to transmit ultrasound images from a remote location to an expert who guides the acquisition of images and interprets them in real time. Multiple studies have demonstrated the feasibility of teleultrasound. However, its application during helicopter flight using long-term evolution (LTE) for streaming has not been studied. Therefore, we conducted a study to examine the feasibility of teleultrasound in an Airbus H145 helicopter. METHODS: Four anesthesiologists and one military physician were recruited to perform telementored extended Focused Assessment with Sonography in Trauma (eFAST) during nine helicopter flights, each with a unique healthy volunteer. A radiologist was recruited as a remote expert, guiding the physicians in their examinations. The examining physicians reported the user experience of telementored eFAST on a questionnaire, while the remote expert rated the diagnostic quality of the images on a 1-5 Likert scale. In addition, we measured the duration of the examinations and key LTE network parameters including signal strength, quality, and continuity. RESULTS: The images were rated to an average of 4.9 by the remote expert, corresponding to good diagnostic quality. The average duration of telementored eFAST was 05:54 min. LTE coverage was negatively affected by proximity to urban areas and ceased above 2000 ft altitude. Occasional audio problems were addressed by using the Voice over LTE network for communication. The examining physicians unanimously reported on the questionnaire that they would use telementored eFAST on patients. CONCLUSION: Telementored eFAST is feasible in ambulance helicopters and can produce images of good diagnostic quality. However, it relies on stable LTE coverage, which is influenced by many factors, including the helicopter's altitude and flight path. Furthermore, its benefit on patient outcomes remains to be proven.


Asunto(s)
Evaluación Enfocada con Ecografía para Trauma , Humanos , Estudios de Factibilidad , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA