Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 11: 469-481, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28086195

RESUMEN

Zinc deficiency affects the development of the central nervous system (CNS) through mechanisms only partially understood. We previously showed that zinc deficiency causes CNS oxidative stress, damaging microtubules and impairing protein nuclear shuttling. STAT1 and STAT3 transcription factors, which require nuclear import for their functions, play major roles in CNS development. Thus, we investigated whether zinc deficiency disrupts STAT1 and STAT3 signaling pathways in the developing fetal CNS, characterizing the involvement of oxidative stress and the cytoskeleton in the adverse effects. Maternal (gestation day 0-19) marginal zinc deficiency (MZD) reduced STAT1 and STAT3 tyrosine phosphorylation and their nuclear translocation in the embryonic day 19 (E19) rat brain. Similar effects were observed in zinc depleted IMR-32 neuroblastoma cells, with an associated decrease in STAT1- and STAT3-dependent gene transactivation. Zinc deficiency caused oxidative stress (increased 4-hydroxynonenal-protein adducts) in E19 brain and IMR-32 cells, which was prevented in cells by supplementation with 0.5mM α-lipoic acid (LA). In zinc depleted IMR-32 cells, the low tyrosine phosphorylation of STAT1, but not that of STAT3, recovered upon incubation with LA. STAT1 and STAT3 nuclear transports were also restored by LA. Accordingly, chemical disruption of the cytoskeleton partially reduced STAT1 and STAT3 nuclear levels. In summary, the redox-dependent tyrosine phosphorylation, and oxidant-mediated disruption of the cytoskeleton are involved in the deleterious effects of zinc deficit on STAT1 and STAT3 activation and nuclear translocation. Therefore, disruption of the STAT1 and STAT3 signaling pathways may in part explain the deleterious effects of maternal MZD on fetal brain development.


Asunto(s)
Encéfalo/metabolismo , Estrés Oxidativo/efectos de los fármacos , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT3/genética , Zinc/metabolismo , Animales , Encéfalo/crecimiento & desarrollo , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Oxidación-Reducción , Fosforilación , Transporte de Proteínas/efectos de los fármacos , Ratas , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Ácido Tióctico/administración & dosificación , Activación Transcripcional/efectos de los fármacos , Tirosina/metabolismo , Zinc/deficiencia
2.
Br J Pharmacol ; 165(7): 2152-66, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21955327

RESUMEN

BACKGROUND AND PURPOSE: Phospho-sulindac (PS; OXT-328) prevents colon cancer in mice, especially when combined with difluoromethylornithine (DFMO). Here, we explored its metabolism and pharmacokinetics. EXPERIMENTAL APPROACH: PS metabolism was studied in cultured cells, liver microsomes and cytosol, intestinal microsomes and in mice. Pharmacokinetics and biodistribution of PS were studied in mice. KEY RESULTS: PS undergoes reduction and oxidation yielding PS sulphide and PS sulphone; is hydrolysed releasing sulindac, which generates sulindac sulphide (SSide) and sulindac sulphone (SSone), all of which are glucuronidated. Liver and intestinal microsomes metabolized PS extensively but cultured cells converted only 10% of it to PS sulphide and PS sulphone. In mice, oral PS is rapidly absorbed, metabolized and distributed to the blood and other tissues. PS survives only partially intact in blood; of its three major metabolites (sulindac, SSide and SSone), sulindac has the highest C(max) and SSone the highest t(1/2) ; their AUC(0-24h) are similar. Compared with conventional sulindac, PS generated more SSone but less SSide, which may contribute to the safety of PS. In the gastroduodenal wall of mice, 71% of PS was intact; sulindac, SSide and SSone together accounted for <30% of the total. This finding may explain the lack of gastrointestinal toxicity by PS. DFMO had no effect on PS metabolism but significantly reduced drug level in mouse plasma and other tissues. CONCLUSIONS AND IMPLICATIONS: Our findings establish the metabolism of PS define its pharmacokinetics and biodistribution, describe its interactions with DFMO and largely explain its gastrointestinal safety.


Asunto(s)
Eflornitina/farmacología , Compuestos Organofosforados/metabolismo , Compuestos Organofosforados/farmacocinética , Sulindac/análogos & derivados , Animales , Línea Celular Tumoral , Neoplasias del Colon/prevención & control , Citosol/metabolismo , Eflornitina/administración & dosificación , Femenino , Humanos , Técnicas In Vitro , Mucosa Intestinal/metabolismo , Ratones , Ratones Endogámicos BALB C , Microsomas/metabolismo , Microsomas Hepáticos/metabolismo , Compuestos Organofosforados/administración & dosificación , Ratas , Sulindac/administración & dosificación , Sulindac/metabolismo , Sulindac/farmacocinética , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA