Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Open Biol ; 14(6): 230363, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38889796

RESUMEN

We present a novel small molecule antiviral chemotype that was identified by an unconventional cell-free protein synthesis and assembly-based phenotypic screen for modulation of viral capsid assembly. Activity of PAV-431, a representative compound from the series, has been validated against infectious viruses in multiple cell culture models for all six families of viruses causing most respiratory diseases in humans. In animals, this chemotype has been demonstrated efficacious for porcine epidemic diarrhoea virus (a coronavirus) and respiratory syncytial virus (a paramyxovirus). PAV-431 is shown to bind to the protein 14-3-3, a known allosteric modulator. However, it only appears to target the small subset of 14-3-3 which is present in a dynamic multi-protein complex whose components include proteins implicated in viral life cycles and in innate immunity. The composition of this target multi-protein complex appears to be modified upon viral infection and largely restored by PAV-431 treatment. An advanced analog, PAV-104, is shown to be selective for the virally modified target, thereby avoiding host toxicity. Our findings suggest a new paradigm for understanding, and drugging, the host-virus interface, which leads to a new clinical therapeutic strategy for treatment of respiratory viral disease.


Asunto(s)
Antivirales , Antivirales/farmacología , Antivirales/química , Humanos , Animales , Proteínas 14-3-3/metabolismo , Complejos Multiproteicos/metabolismo , Interacciones Huésped-Patógeno/efectos de los fármacos , Línea Celular
2.
bioRxiv ; 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34931190

RESUMEN

We present a small molecule chemotype, identified by an orthogonal drug screen, exhibiting nanomolar activity against members of all the six viral families causing most human respiratory viral disease, with a demonstrated barrier to resistance development. Antiviral activity is shown in mammalian cells, including human primary bronchial epithelial cells cultured to an air-liquid interface and infected with SARS-CoV-2. In animals, efficacy of early compounds in the lead series is shown by survival (for a coronavirus) and viral load (for a paramyxovirus). The drug target is shown to include a subset of the protein 14-3-3 within a transient host multi-protein complex containing components implicated in viral lifecycles and in innate immunity. This multi-protein complex is modified upon viral infection and largely restored by drug treatment. Our findings suggest a new clinical therapeutic strategy for early treatment upon upper respiratory viral infection to prevent progression to lower respiratory tract or systemic disease. One Sentence Summary: A host-targeted drug to treat all respiratory viruses without viral resistance development.

3.
Proc Natl Acad Sci U S A ; 110(10): E861-8, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23404707

RESUMEN

We present an unconventional approach to antiviral drug discovery, which is used to identify potent small molecules against rabies virus. First, we conceptualized viral capsid assembly as occurring via a host-catalyzed biochemical pathway, in contrast to the classical view of capsid formation by self-assembly. This suggested opportunities for antiviral intervention by targeting previously unappreciated catalytic host proteins, which were pursued. Second, we hypothesized these host proteins to be components of heterogeneous, labile, and dynamic multi-subunit assembly machines, not easily isolated by specific target protein-focused methods. This suggested the need to identify active compounds before knowing the precise protein target. A cell-free translation-based small molecule screen was established to recreate the hypothesized interactions involving newly synthesized capsid proteins as host assembly machine substrates. Hits from the screen were validated by efficacy against infectious rabies virus in mammalian cell culture. Used as affinity ligands, advanced analogs were shown to bind a set of proteins that effectively reconstituted drug sensitivity in the cell-free screen and included a small but discrete subfraction of cellular ATP-binding cassette family E1 (ABCE1), a host protein previously found essential for HIV capsid formation. Taken together, these studies advance an alternate view of capsid formation (as a host-catalyzed biochemical pathway), a different paradigm for drug discovery (whole pathway screening without knowledge of the target), and suggest the existence of labile assembly machines that can be rendered accessible as next-generation drug targets by the means described.


Asunto(s)
Antivirales/farmacología , Interacciones Huésped-Patógeno/efectos de los fármacos , Virus de la Rabia/efectos de los fármacos , Virus de la Rabia/fisiología , Proteínas Virales/fisiología , Secuencia de Aminoácidos , Animales , Sistema Libre de Células , Chlorocebus aethiops , Descubrimiento de Drogas , Interacciones Huésped-Patógeno/fisiología , Humanos , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/fisiología , Dominios y Motivos de Interacción de Proteínas , Virus de la Rabia/genética , Células Vero , Proteínas Virales/química , Proteínas Virales/genética , Ensamble de Virus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA