Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Semin Cell Dev Biol ; 148-149: 22-32, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36792438

RESUMEN

Plasmodiophora brassicae Wor., the clubroot pathogen, is the perfect example of an "atypical" plant pathogen. This soil-borne protist and obligate biotrophic parasite infects the roots of cruciferous crops, inducing galls or clubs that lead to wilting, loss of productivity, and plant death. Unlike many other agriculturally relevant pathosystems, research into the molecular mechanisms that underlie clubroot disease and Plasmodiophora-host interactions is limited. After release of the first P. brassicae genome sequence and subsequent availability of transcriptomic data, the clubroot research community have implicated the involvement of phytohormones during the clubroot pathogen's manipulation of host development. Herein we review the main events leading to the formation of root galls and describe how modulation of select phytohormones may be key to modulating development of the plant host to the benefit of the pathogen. Effector-host interactions are at the base of different strategies employed by pathogens to hijack plant cellular processes. This is how we suspect the clubroot pathogen hijacks host plant metabolism and development to induce nutrient-sink roots galls, emphasizing a need to deepen our understanding of this master manipulator.


Asunto(s)
Enfermedades de las Plantas , Reguladores del Crecimiento de las Plantas , Transcriptoma , Perfilación de la Expresión Génica , Productos Agrícolas
2.
PLoS One ; 17(12): e0277668, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36516116

RESUMEN

Agroinfiltration is a method used in biopharming to support plant-based biosynthesis of therapeutic proteins such as antibodies and viral antigens involved in vaccines. Major advantages of generating proteins in plants is the low cost, massive scalability and the rapid yield of the technology. Herein, we report the agroinfiltration-based production of glycosylated SARS-CoV-2 Spike receptor-binding domain (RBD) protein. We show that it exhibits high-affinity binding to the SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) and displays folding similar to antigen produced in mammalian expression systems. Moreover, our plant-expressed RBD was readily detected by IgM, IgA, and IgG antibodies from the serum of SARS-CoV-2 infected and vaccinated individuals. We further demonstrate that binding of plant-expressed RBD to ACE2 is efficiently neutralized by these antibodies. Collectively, these findings demonstrate that recombinant RBD produced via agroinfiltration exhibits suitable biochemical and antigenic features for use in serological and neutralization assays, and in subunit vaccine platforms.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Animales , Enzima Convertidora de Angiotensina 2 , COVID-19/prevención & control , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus , Vacunas de Subunidad , Mamíferos/metabolismo
3.
Front Microbiol ; 13: 937912, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966663

RESUMEN

Over the past three decades, root organ cultures (ROCs) have been the gold standard method for studying arbuscular mycorrhizal fungi (AMF) under in vitro conditions, and ROCs derived from various plant species have been used as hosts for AM monoxenic cultures. While there is compelling evidence that host identity can significantly modify AMF fitness, there is currently no standardized methodology to assess the performance of ROCs in the propagation of their fungal symbionts. We describe RocTest, a robust methodological approach that models the propagation of AMF in symbiosis with ROCs. The development of extraradical fungal structures and the pattern of sporulation are modeled using cumulative link mixed models and linear mixed models. We demonstrate functionality of RocTest by evaluating the performance of three species of ROCs (Daucus carota, Medicago truncatula, Nicotiana benthamiana) in the propagation of three species of AMF (Rhizophagus clarus, Rhizophagus irregularis, Glomus sp.). RocTest produces a simple graphical output to assess the performance of ROCs and shows that fungal propagation depends on the three-way interaction between ROC, AMF, and time. RocTest makes it possible to identify the best combination of host/AMF for fungal development and spore production, making it an important asset for germplasm collections and AMF research.

4.
Cell ; 184(20): 5201-5214.e12, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34536345

RESUMEN

Certain obligate parasites induce complex and substantial phenotypic changes in their hosts in ways that favor their transmission to other trophic levels. However, the mechanisms underlying these changes remain largely unknown. Here we demonstrate how SAP05 protein effectors from insect-vectored plant pathogenic phytoplasmas take control of several plant developmental processes. These effectors simultaneously prolong the host lifespan and induce witches' broom-like proliferations of leaf and sterile shoots, organs colonized by phytoplasmas and vectors. SAP05 acts by mediating the concurrent degradation of SPL and GATA developmental regulators via a process that relies on hijacking the plant ubiquitin receptor RPN10 independent of substrate ubiquitination. RPN10 is highly conserved among eukaryotes, but SAP05 does not bind insect vector RPN10. A two-amino-acid substitution within plant RPN10 generates a functional variant that is resistant to SAP05 activities. Therefore, one effector protein enables obligate parasitic phytoplasmas to induce a plethora of developmental phenotypes in their hosts.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/parasitología , Interacciones Huésped-Parásitos/fisiología , Parásitos/fisiología , Proteolisis , Ubiquitinas/metabolismo , Secuencia de Aminoácidos , Animales , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Ingeniería Genética , Humanos , Insectos/fisiología , Modelos Biológicos , Fenotipo , Fotoperiodo , Filogenia , Phytoplasma/fisiología , Desarrollo de la Planta , Brotes de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , Reproducción , Nicotiana , Factores de Transcripción/metabolismo , Transcripción Genética
5.
Curr Biol ; 31(7): 1531-1538.e6, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33545043

RESUMEN

The arbuscular mycorrhizal fungi (AMF) are involved in one of the most ecologically important symbioses on the planet, occurring within the roots of most land plants.1 Knowledge of even basic elements of AM fungal biology is still poor, with the discovery that AMF may in fact have a sexual life cycle being only very recently reported.2-5 AMF produce asexual spores that contain up to several thousand individual haploid nuclei6 of either largely uniform genotypes (AMF homokaryons) or nuclei originating from two parental genotypes2-5 (AMF dikaryons or heterokaryons). In contrast to the sexual dikaryons in the phyla Ascomycota and Basidiomycota,7,8 in which pairs of nuclei coexist in single hyphal compartments, AMF dikaryons carry several thousand nuclei in a coenocytic mycelium. Here, we set out to better understand the dynamics of this unique multinucleate condition by combining molecular analyses with advanced microscopy and modeling. Herein, we report that select AMF dikaryotic strains carry the distinct nucleotypes in equal proportions to one another, whereas others show an unequal distribution of parental nucleotypes. In both cases, the relative proportions within a given strain are inherently stable. Simulation models suggest that AMF dikaryons may be maintained through nuclear cooperation dynamics. Remarkably, we report that these nuclear ratios shift dramatically in response to plant host identity, revealing a previously unknown layer of genetic complexity and dynamism within the intimate interactions that occur between the partners of a prominent terrestrial symbiosis.


Asunto(s)
Núcleo Celular , Micorrizas , Plantas/microbiología , Núcleo Celular/genética , Hongos , Micorrizas/genética , Raíces de Plantas/microbiología , Simbiosis
6.
J Exp Bot ; 72(7): 2275-2287, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33369646

RESUMEN

Post-embryonic organogenesis has uniquely equipped plants to become developmentally responsive to their environment, affording opportunities to remodel organism growth and architecture to an extent not possible in other higher order eukaryotes. It is this developmental plasticity that makes the field of plant-microbe interactions an exceptionally fascinating venue in which to study symbiosis. This review article describes the various ways in which mutualistic microbes alter the growth, development, and architecture of the roots of their plant hosts. We first summarize general knowledge of root development, and then examine how association of plants with beneficial microbes affects these processes. Working our way inwards from the epidermis to the pericycle, this review dissects the cell biology and molecular mechanisms underlying plant-microbe interactions in a tissue-specific manner. We examine the ways in which microbes gain entry into the root, and modify this specialized organ for symbiont accommodation, with a particular emphasis on the colonization of root cortical cells. We present significant advances in our understanding of root-microbe interactions, and conclude our discussion by identifying questions pertinent to root endosymbiosis that at present remain unresolved.


Asunto(s)
Raíces de Plantas , Simbiosis , Interacciones Microbianas
7.
PLoS Pathog ; 15(9): e1008035, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31557268

RESUMEN

Phytoplasmas are insect-transmitted bacterial pathogens that colonize a wide range of plant species, including vegetable and cereal crops, and herbaceous and woody ornamentals. Phytoplasma-infected plants often show dramatic symptoms, including proliferation of shoots (witch's brooms), changes in leaf shapes and production of green sterile flowers (phyllody). Aster Yellows phytoplasma Witches' Broom (AY-WB) infects dicots and its effector, secreted AYWB protein 11 (SAP11), was shown to be responsible for the induction of shoot proliferation and leaf shape changes of plants. SAP11 acts by destabilizing TEOSINTE BRANCHED 1-CYCLOIDEA-PROLIFERATING CELL FACTOR (TCP) transcription factors, particularly the class II TCPs of the CYCLOIDEA/TEOSINTE BRANCHED 1 (CYC/TB1) and CINCINNATA (CIN)-TCP clades. SAP11 homologs are also present in phytoplasmas that cause economic yield losses in monocot crops, such as maize, wheat and coconut. Here we show that a SAP11 homolog of Maize Bushy Stunt Phytoplasma (MBSP), which has a range primarily restricted to maize, destabilizes specifically TB1/CYC TCPs. SAP11MBSP and SAP11AYWB both induce axillary branching and SAP11AYWB also alters leaf development of Arabidopsis thaliana and maize. However, only in maize, SAP11MBSP prevents female inflorescence development, phenocopying maize tb1 lines, whereas SAP11AYWB prevents male inflorescence development and induces feminization of tassels. SAP11AYWB promotes fecundity of the AY-WB leafhopper vector on A. thaliana and modulates the expression of A. thaliana leaf defence response genes that are induced by this leafhopper, in contrast to SAP11MBSP. Neither of the SAP11 effectors promote fecundity of AY-WB and MBSP leafhopper vectors on maize. These data provide evidence that class II TCPs have overlapping but also distinct roles in regulating development and defence in a dicot and a monocot plant species that is likely to shape SAP11 effector evolution depending on the phytoplasma host range.


Asunto(s)
Arabidopsis/microbiología , Proteínas Bacterianas/metabolismo , Phytoplasma/patogenicidad , Zea mays/microbiología , Secuencia de Aminoácidos , Animales , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , Especificidad del Huésped , Insectos Vectores/microbiología , Phytoplasma/genética , Phytoplasma/fisiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Homología de Secuencia de Aminoácido , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
8.
Mol Plant Microbe Interact ; 32(10): 1277-1290, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31070991

RESUMEN

During arbuscular mycorrhizal (AM) symbiosis, activation of a symbiosis signaling pathway induces gene expression necessary for accommodation of AM fungi. Here, we focus on pathway components Medicago truncatula INTERACTING PROTEIN OF DOES NOT MAKE INFECTIONS 3 (IPD3) and IPD3 LIKE (IPD3L), which are potential orthologs of Lotus japonicus CYCLOPS, a transcriptional regulator essential for AM symbiosis. In the double mutant ipd3 ipd3l, hyphal entry through the epidermis and overall colonization levels are reduced relative to the wild type but fully developed arbuscules are present in the cortex. In comparison with the wild type, colonization of ipd3 ipd3l is acutely sensitive to higher phosphate levels in the growth medium, with a disproportionate decrease in epidermal penetration, overall colonization, and symbiotic gene expression. When constitutively expressed in ipd3 ipd3l, an autoactive DOES NOT MAKE INFECTIONS 3 induces the expression of transcriptional regulators REDUCED ARBUSCULAR MYCORRHIZA 1 and REQUIRED for ARBUSCULE DEVELOPMENT 1, providing a possible avenue for arbuscule development in the absence of IPD3 and IPD3L. An increased sensitivity of ipd3 ipd3l to GA3 suggests an involvement of DELLA. The data reveal partial redundancy in the symbiosis signaling pathway, which may ensure robust signaling in low-phosphorus environments, while IPD3 and IPD3L maintain signaling in higher-phosphorus environments. The latter may buffer the pathway from short-term variation in phosphorus levels encountered by roots during growth in heterogeneous soil environments.


Asunto(s)
Medicago truncatula , Micorrizas , Fosfatos , Simbiosis , Factores de Transcripción , Medicago truncatula/microbiología , Raíces de Plantas/microbiología , Simbiosis/fisiología , Factores de Transcripción/metabolismo
9.
Plant Cell Environ ; 42(5): 1758-1774, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30578745

RESUMEN

Sorghum is an important crop grown worldwide for feed and fibre. Like most plants, it has the capacity to benefit from symbioses with arbuscular mycorrhizal (AM) fungi, and its diverse genotypes likely vary in their responses. Currently, the genetic basis of mycorrhiza-responsiveness is largely unknown. Here, we investigated transcriptional and physiological responses of sorghum accessions, founders of a bioenergy nested association mapping panel, for their responses to four species of AM fungi. Transcriptome comparisons across four accessions identified mycorrhiza-inducible genes; stringent filtering criteria revealed 278 genes that show mycorrhiza-inducible expression independent of genotype and 55 genes whose expression varies with genotype. The latter suggests variation in phosphate transport and defence across these accessions. The mycorrhiza growth and nutrient responses of 18 sorghum accessions varied tremendously, ranging from mycorrhiza-dependent to negatively mycorrhiza-responsive. Additionally, accessions varied in the number of AM fungi to which they showed positive responses, from one to several fungal species. Mycorrhiza growth and phosphorus responses were positively correlated, whereas expression of two mycorrhiza-inducible phosphate transporters, SbPT8 and SbPT9, correlated negatively with mycorrhizal growth responses. AM fungi improve growth and mineral nutrition of sorghum, and the substantial variation between lines provides the potential to map loci influencing mycorrhiza responses.


Asunto(s)
Micorrizas , Raíces de Plantas/metabolismo , Sorghum/genética , Sorghum/microbiología , Simbiosis/genética , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Perfilación de la Expresión Génica , Genes de Plantas/fisiología , Micorrizas/fisiología , Proteínas de Transporte de Fosfato/genética , Fósforo/metabolismo , Raíces de Plantas/microbiología , Sorghum/crecimiento & desarrollo , Sorghum/fisiología
10.
New Phytol ; 221(3): 1556-1573, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30368822

RESUMEN

Arbuscular mycorrhizal (AM) fungi form endosymbioses with most plants, and they themselves are hosts for Mollicutes/Mycoplasma-related endobacteria (MRE). Despite their significance, genomic information for AM fungi and their MRE are relatively sparse, which hinders our understanding of their biology and evolution. We assembled the genomes of the AM fungus Diversispora epigaea (formerly Glomus versiforme) and its MRE and performed comparative genomics and evolutionary analyses. The D. epigaea genome showed a pattern of substantial gene duplication and differential evolution of gene families, including glycosyltransferase family 25, whose activities are exclusively lipopolysaccharide biosynthesis. Genes acquired by horizontal transfer from bacteria possibly function in defense against foreign DNA or viruses. The MRE population was diverse, with multiple genomes displaying characteristics of differential evolution and encoding many MRE-specific genes as well as genes of AM fungal origin. Gene family expansion in D. epigaea may enhance adaptation to both external and internal environments, such as expansion of kinases for signal transduction upon external stimuli and expansion of nucleoside salvage pathway genes potentially for competition with MRE, whose genomes lack purine and pyrimidine biosynthetic pathways. Collectively, this metagenome provides high-quality references and begins to reveal the diversity within AM fungi and their MRE.


Asunto(s)
Evolución Biológica , Genoma Fúngico , Glomeromycota/genética , Mycoplasma/fisiología , Micorrizas/genética , Simbiosis/genética , Tenericutes/fisiología , Duplicación de Gen , Transferencia de Gen Horizontal/genética , Genes Fúngicos , Glomeromycota/metabolismo , Familia de Multigenes , Filogenia , Esporas Fúngicas/fisiología
11.
Plant Cell ; 29(10): 2319-2335, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28855333

RESUMEN

Plants have lived in close association with arbuscular mycorrhizal (AM) fungi for over 400 million years. Today, this endosymbiosis occurs broadly in the plant kingdom where it has a pronounced impact on plant mineral nutrition. The symbiosis develops deep within the root cortex with minimal alterations in the external appearance of the colonized root; however, the absence of macroscopic alterations belies the extensive signaling, cellular remodeling, and metabolic alterations that occur to enable accommodation of the fungal endosymbiont. Recent research has revealed the involvement of a novel N-acetyl glucosamine transporter and an alpha/beta-fold hydrolase receptor at the earliest stages of AM symbiosis. Calcium channels required for symbiosis signaling have been identified, and connections between the symbiosis signaling pathway and key transcriptional regulators that direct AM-specific gene expression have been established. Phylogenomics has revealed the existence of genes conserved for AM symbiosis, providing clues as to how plant cells fine-tune their biology to enable symbiosis, and an exciting coalescence of genome mining, lipid profiling, and tracer studies collectively has led to the conclusion that AM fungi are fatty acid auxotrophs and that plants provide their fungal endosymbionts with fatty acids. Here, we provide an overview of the molecular program for AM symbiosis and discuss these recent advances.


Asunto(s)
Micorrizas/fisiología , Simbiosis/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Plantas/metabolismo , Plantas/microbiología , Transducción de Señal
12.
Curr Biol ; 27(8): 1206-1212, 2017 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-28392110

RESUMEN

During the endosymbiosis formed between plants and arbuscular mycorrhizal (AM) fungi, the root cortical cells are colonized by branched hyphae called arbuscules, which function in nutrient exchange with the plant [1]. Despite their positive function, arbuscules are ephemeral structures, and their development is followed by a degeneration phase, in which the arbuscule and surrounding periarbuscular membrane and matrix gradually disappear from the root cell [2, 3]. Currently, the root cell's role in this process and the underlying regulatory mechanisms are unknown. Here, by using a Medicago truncatula pt4 mutant in which arbuscules degenerate prematurely [4], we identified arbuscule degeneration-associated genes, of which 38% are predicted to encode secreted hydrolases, suggesting a role in disassembly of the arbuscule and interface. Through RNAi and analysis of an insertion mutant, we identified a symbiosis-specific MYB-like transcription factor (MYB1) that suppresses arbuscule degeneration in mtpt4. In myb1, expression of several degeneration-associated genes is reduced. Conversely, in roots constitutively overexpressing MYB1, expression of degeneration-associated genes is increased and subsequent development of symbiosis is impaired. MYB1-regulated gene expression is enhanced by DELLA proteins and is dependent on NSP1 [5], but not NSP2 [6]. Furthermore, MYB1 interacts with DELLA and NSP1. Our data identify a transcriptional program for arbuscule degeneration and reveal that its regulators include MYB1 in association with two transcriptional regulators, NSP1 and DELLA, both of which function in preceding phases of the symbiosis. We propose that the combinatorial use of transcription factors enables the sequential expression of transcriptional programs for arbuscule development and degeneration.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Micorrizas/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Simbiosis , Medicago truncatula/crecimiento & desarrollo , Medicago truncatula/microbiología , Medicago truncatula/fisiología , Micorrizas/fisiología , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Plantas Modificadas Genéticamente
13.
PLoS Genet ; 10(10): e1004742, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25340565

RESUMEN

Many bacteria carry two or more chromosome-like replicons. This occurs in pathogens such as Vibrio cholerea and Brucella abortis as well as in many N2-fixing plant symbionts including all isolates of the alfalfa root-nodule bacteria Sinorhizobium meliloti. Understanding the evolution and role of this multipartite genome organization will provide significant insight into these important organisms; yet this knowledge remains incomplete, in part, because technical challenges of large-scale genome manipulations have limited experimental analyses. The distinct evolutionary histories and characteristics of the three replicons that constitute the S. meliloti genome (the chromosome (3.65 Mb), pSymA megaplasmid (1.35 Mb), and pSymB chromid (1.68 Mb)) makes this a good model to examine this topic. We transferred essential genes from pSymB into the chromosome, and constructed strains that lack pSymB as well as both pSymA and pSymB. This is the largest reduction (45.4%, 3.04 megabases, 2866 genes) of a prokaryotic genome to date and the first removal of an essential chromid. Strikingly, strains lacking pSymA and pSymB (ΔpSymAB) lost the ability to utilize 55 of 74 carbon sources and various sources of nitrogen, phosphorous and sulfur, yet the ΔpSymAB strain grew well in minimal salts media and in sterile soil. This suggests that the core chromosome is sufficient for growth in a bulk soil environment and that the pSymA and pSymB replicons carry genes with more specialized functions such as growth in the rhizosphere and interaction with the plant. These experimental data support a generalized evolutionary model, in which non-chromosomal replicons primarily carry genes with more specialized functions. These large secondary replicons increase the organism's niche range, which offsets their metabolic burden on the cell (e.g. pSymA). Subsequent co-evolution with the chromosome then leads to the formation of a chromid through the acquisition of functions core to all niches (e.g. pSymB).


Asunto(s)
Cromosomas Bacterianos/genética , Evolución Molecular , Genoma Bacteriano , Sinorhizobium/genética , Ecología , Genómica , Medicago sativa/microbiología , Plásmidos/genética , Replicón/genética , Sinorhizobium/fisiología
14.
PLoS Biol ; 12(4): e1001835, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24714165

RESUMEN

Pathogens that rely upon multiple hosts to complete their life cycles often modify behavior and development of these hosts to coerce them into improving pathogen fitness. However, few studies describe mechanisms underlying host coercion. In this study, we elucidate the mechanism by which an insect-transmitted pathogen of plants alters floral development to convert flowers into vegetative tissues. We find that phytoplasma produce a novel effector protein (SAP54) that interacts with members of the MADS-domain transcription factor (MTF) family, including key regulators SEPALLATA3 and APETALA1, that occupy central positions in the regulation of floral development. SAP54 mediates degradation of MTFs by interacting with proteins of the RADIATION SENSITIVE23 (RAD23) family, eukaryotic proteins that shuttle substrates to the proteasome. Arabidopsis rad23 mutants do not show conversion of flowers into leaf-like tissues in the presence of SAP54 and during phytoplasma infection, emphasizing the importance of RAD23 to the activity of SAP54. Remarkably, plants with SAP54-induced leaf-like flowers are more attractive for colonization by phytoplasma leafhopper vectors and this colonization preference is dependent on RAD23. An effector that targets and suppresses flowering while simultaneously promoting insect herbivore colonization is unprecedented. Moreover, RAD23 proteins have, to our knowledge, no known roles in flower development, nor plant defence mechanisms against insects. Thus SAP54 generates a short circuit between two key pathways of the host to alter development, resulting in sterile plants, and promotes attractiveness of these plants to leafhopper vectors helping the obligate phytoplasmas reproduce and propagate (zombie plants).


Asunto(s)
Arabidopsis/microbiología , Proteínas Bacterianas/metabolismo , Nicotiana/microbiología , Phytoplasma/patogenicidad , Enfermedades de las Plantas/microbiología , Animales , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Flores/crecimiento & desarrollo , Flores/microbiología , Hemípteros/microbiología , Proteínas de Homeodominio/metabolismo , Interacciones Huésped-Patógeno , Proteínas de Dominio MADS/metabolismo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Nicotiana/genética , Nicotiana/virología , Factores de Transcripción/metabolismo
15.
New Phytol ; 202(3): 838-848, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24552625

RESUMEN

Phytoplasmas are insect-transmitted bacterial phytopathogens that secrete virulence effectors and induce changes in the architecture and defense response of their plant hosts. We previously demonstrated that the small (± 10 kDa) virulence effector SAP11 of Aster Yellows phytoplasma strain Witches' Broom (AY-WB) binds and destabilizes Arabidopsis CIN (CINCINNATA) TCP (TEOSINTE-BRANCHED, CYCLOIDEA, PROLIFERATION FACTOR 1 AND 2) transcription factors, resulting in dramatic changes in leaf morphogenesis and increased susceptibility to phytoplasma insect vectors. SAP11 contains a bipartite nuclear localization signal (NLS) that targets this effector to plant cell nuclei. To further understand how SAP11 functions, we assessed the involvement of SAP11 regions in TCP binding and destabilization using a series of mutants. SAP11 mutants lacking the entire N-terminal domain, including the NLS, interacted with TCPs but did not destabilize them. SAP11 mutants lacking the C-terminal domain were impaired in both binding and destabilization of TCPs. These SAP11 mutants did not alter leaf morphogenesis. A SAP11 mutant that did not accumulate in plant nuclei (SAP11ΔNLS-NES) was able to bind and destabilize TCP transcription factors, but instigated weaker changes in leaf morphogenesis than wild-type SAP11. Overall the results suggest that phytoplasma effector SAP11 has a modular organization in which at least three domains are required for efficient CIN-TCP destabilization in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Núcleo Celular/metabolismo , Phytoplasma/patogenicidad , Señales de Clasificación de Proteína , Secuencia de Aminoácidos , Arabidopsis/microbiología , Datos de Secuencia Molecular , Mutación/genética , Señales de Exportación Nuclear , Fenotipo , Hojas de la Planta/microbiología , Hojas de la Planta/fisiología , Unión Proteica , Estabilidad Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Relación Estructura-Actividad , Virulencia
16.
Proc Natl Acad Sci U S A ; 108(48): E1254-63, 2011 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-22065743

RESUMEN

Phytoplasmas are insect-transmitted phytopathogenic bacteria that can alter plant morphology and the longevity and reproduction rates and behavior of their insect vectors. There are various examples of animal and plant parasites that alter the host phenotype to attract insect vectors, but it is unclear how these parasites accomplish this. We hypothesized that phytoplasmas produce effectors that modulate specific targets in their hosts leading to the changes in plant development and insect performance. Previously, we sequenced and mined the genome of Aster Yellows phytoplasma strain Witches' Broom (AY-WB) and identified 56 candidate effectors. Here, we report that the secreted AY-WB protein 11 (SAP11) effector modulates plant defense responses to the advantage of the AY-WB insect vector Macrosteles quadrilineatus. SAP11 binds and destabilizes Arabidopsis CINCINNATA (CIN)-related TEOSINTE BRANCHED1, CYCLOIDEA, PROLIFERATING CELL FACTORS 1 and 2 (TCP) transcription factors, which control plant development and promote the expression of lipoxygenase (LOX) genes involved in jasmonate (JA) synthesis. Both the Arabidopsis SAP11 lines and AY-WB-infected plants produce less JA on wounding. Furthermore, the AY-WB insect vector produces more offspring on AY-WB-infected plants, SAP11 transgenic lines, and plants impaired in CIN-TCP and JA synthesis. Thus, SAP11-mediated destabilization of CIN-TCPs leads to the down-regulation of LOX2 expression and JA synthesis and an increase in M. quadrilineatus progeny. Phytoplasmas are obligate inhabitants of their plant host and insect vectors, in which the latter transmits AY-WB to a diverse range of plant species. This finding demonstrates that pathogen effectors can reach beyond the pathogen-host interface to modulate a third organism in the biological interaction.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/microbiología , Hemípteros/fisiología , Interacciones Huésped-Patógeno/fisiología , Proteínas de Insectos/metabolismo , Insectos Vectores/fisiología , Phytoplasma/química , Animales , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Fertilidad/fisiología , Modelos Lineales , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/biosíntesis , Plantas Modificadas Genéticamente , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducción/fisiología , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos
17.
Plant Physiol ; 157(2): 831-41, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21849514

RESUMEN

Phytoplasmas are insect-transmitted bacterial plant pathogens that cause considerable damage to a diverse range of agricultural crops globally. Symptoms induced in infected plants suggest that these phytopathogens may modulate developmental processes within the plant host. We report herein that Aster Yellows phytoplasma strain Witches' Broom (AY-WB) readily infects the model plant Arabidopsis (Arabidopsis thaliana) ecotype Columbia, inducing symptoms that are characteristic of phytoplasma infection, such as the production of green leaf-like flowers (virescence and phyllody) and increased formation of stems and branches (witches' broom). We found that the majority of genes encoding secreted AY-WB proteins (SAPs), which are candidate effector proteins, are expressed in Arabidopsis and the AY-WB insect vector Macrosteles quadrilineatus (Hemiptera; Cicadellidae). To identify which of these effector proteins induce symptoms of phyllody and virescence, we individually expressed the effector genes in Arabidopsis. From this screen, we have identified a novel AY-WB effector protein, SAP54, that alters floral development, resulting in the production of leaf-like flowers that are similar to those produced by plants infected with this phytoplasma. This study offers novel insight into the effector profile of an insect-transmitted plant pathogen and reports to our knowledge the first example of a microbial pathogen effector protein that targets flower development in a host.


Asunto(s)
Arabidopsis/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Flores/crecimiento & desarrollo , Phytoplasma/patogenicidad , Enfermedades de las Plantas/microbiología , Animales , Arabidopsis/crecimiento & desarrollo , Flores/microbiología , Hemípteros/genética , Hemípteros/microbiología , Interacciones Huésped-Patógeno , Insectos Vectores/genética , Phytoplasma/metabolismo , Plantas Modificadas Genéticamente/microbiología
18.
Annu Rev Phytopathol ; 49: 175-95, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21838574

RESUMEN

Phytoplasma research begins to bloom (75). Indeed, this review shows that substantial progress has been made with the identification of phytoplasma effectors that alter flower development, induce witches' broom, affect leaf shape, and modify plant-insect interactions. Phytoplasmas have a unique life cycle among pathogens, as they invade organisms of two distinct kingdoms, namely plants (Plantae) and insects (Animalia), and replicate intracellularly in both. Phytoplasmas release effectors into host cells of plants and insects to target host molecules, and in plants these effectors unload from the phloem to access distal tissues and alter basic developmental processes. The effectors provide phytoplasmas with a fitness advantage by modulating their plant and insect hosts. We expect that further research on the functional characterization of phytoplasma effectors will generate new knowledge that is relevant to fundamental aspects of plant sciences and entomology, and for agriculture by improving yields of crops affected by phytoplasma diseases.


Asunto(s)
Proteínas Bacterianas/metabolismo , Insectos/microbiología , Phytoplasma/fisiología , Enfermedades de las Plantas/microbiología , Plantas/microbiología , Animales , Proteínas Bacterianas/genética , Flores/crecimiento & desarrollo , Hemípteros/microbiología , Hemípteros/fisiología , Interacciones Huésped-Patógeno , Insectos/fisiología , Phytoplasma/genética , Phytoplasma/metabolismo , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/metabolismo , Inmunidad de la Planta , Hojas de la Planta/crecimiento & desarrollo , Transporte de Proteínas
19.
Microbiology (Reading) ; 157(Pt 9): 2522-2533, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21700663

RESUMEN

The LysR protein PcaQ regulates the expression of genes encoding products relevant to the degradation of the aromatic acid protocatechuate (3,4-dihydroxybenzoate), and we have previously defined a PcaQ DNA-binding site located upstream of the target pcaDCHGB operon in Sinorhizobium meliloti. In this work, we show that PcaQ also regulates the expression of the S. meliloti smb20568-smb20787-smb20786-smb20785-smb20784 gene cluster, which is predicted to encode an ABC transport system. ABC transport systems have not been shown before to transport protocatechuate, and we have designated this gene cluster pcaMNVWX. The transcriptional start site of pcaM was mapped, and the predicted PcaQ DNA-binding site was located at -73 to -58 relative to this site. Results from electrophoretic mobility shift assays with purified PcaQ and from expression assays indicated that PcaQ activates expression of the transport system in the presence of protocatechuate. To investigate this transport system further, we generated a pcaM deletion mutant (predicted to encode the substrate-binding protein) and introduced a polar insertion mutation into pcaN, a gene that is predicted to encode a permease. These mutants grew poorly on protocatechuate, presumably because they fail to transport protocatechuate. Genome analyses revealed PcaQ-like DNA-binding sites encoded upstream of ABC transport systems in other members of the α-proteobacteria, and thus it appears likely that these systems are involved in the uptake of protocatechuate.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Hidroxibenzoatos/metabolismo , Sinorhizobium meliloti/metabolismo , Factores de Transcripción/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Secuencia de Bases , Sitios de Unión/genética , Orden Génico , Mutación/genética , Sinorhizobium meliloti/genética , Sitio de Iniciación de la Transcripción
20.
Mol Plant Microbe Interact ; 22(9): 1116-27, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19656046

RESUMEN

Hydroxyproline-rich proteins in plants offer a source of carbon and nitrogen to soil-dwelling microorganisms in the form of root exudates and decaying organic matter. This report describes an ABC-type transport system dedicated to the uptake of hydroxyproline in the legume endosymbiont Sinorhizobium meliloti. We have designated genes involved in hydroxyproline metabolism as hyp genes and show that an S. meliloti strain lacking putative transport genes (DeltahypMNPQ) is unable to grow with or transport trans-4-hydroxy-l-proline when this compound is available as a sole source of carbon. Expression of hypM is upregulated in the presence of trans-4-hydroxy-l-proline and cis-4-hydroxy-d-proline, as modulated by a repressor (HypR) of the GntR/FadR subfamily. Although alfalfa root nodules contain hydroxyproline-rich proteins, we demonstrate that the transport system is not highly expressed in nodules, suggesting that bacteroids are not exposed to high levels of free hydroxyproline in planta. In addition to hypMNPQ, we report that S. meliloti encodes a second independent mechanism that enables transport of trans-4-hydroxy-l-proline. This secondary transport mechanism is induced in proline-grown cells and likely entails a system involved in l-proline uptake. This study represents the first genetic description of a prokaryotic hydroxyproline transport system, and the ability to metabolize hydroxyproline may contribute significantly toward the ecological success of plant-associated bacteria such as the rhizobia.


Asunto(s)
Fabaceae/microbiología , Hidroxiprolina/metabolismo , Sinorhizobium meliloti/metabolismo , Simbiosis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Transporte Biológico/efectos de los fármacos , Fabaceae/efectos de los fármacos , Fabaceae/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genes Bacterianos , Hidroxiprolina/farmacología , Inmunohistoquímica , Medicago sativa/citología , Medicago sativa/efectos de los fármacos , Medicago sativa/metabolismo , Medicago sativa/microbiología , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Regiones Promotoras Genéticas/genética , Nódulos de las Raíces de las Plantas/citología , Nódulos de las Raíces de las Plantas/efectos de los fármacos , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Sinorhizobium meliloti/efectos de los fármacos , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/crecimiento & desarrollo , Sitio de Iniciación de la Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA