Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 676: 1023-1031, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39074405

RESUMEN

Nitrate contamination of water resources poses significant health and environmental risks, necessitating efficient denitrification methods that produce ammonia as a desirable product. The electrocatalytic nitrate reduction reaction (NO3RR) powered by renewable energy offers a promising solution, however, developing highly active and selective catalysts remains challenging. Single-atom catalysts (SACs) have shown impressive performance, but the crucial role of their coordination environment, especially the next-nearest neighbor dopant atoms, in modulating catalytic activity for NO3RR is underexplored. This study aims to optimize the NO3RR performance of tungsten (W) single atoms anchored on graphene by precisely engineering their coordination environment through first and next-nearest neighbor dopants. The stability, reaction paths, activity, and selectivity of 43 different nitrogen and boron doping configurations were systematically studied using density functional theory. The results reveal W@C3, with W coordinated to three carbon atoms, exhibits outstanding NO3RR activity with a low limiting potential of -0.36 V. Intriguingly, introducing next-nearest neighbor B and N dopants further enhances the performance, with W@C3-BN achieving a lower limiting potential of -0.26 V. This exceptional activity originates from optimal nitrate adsorption strengths facilitated by orbital hybridization and charge modulation effects induced by the dopants. Furthermore, high energy barriers for NO2 and NO formation on W@C3 and W@C3-BN ensure their selectivity towards NO3RR products. These findings provide crucial atomic-level insights into rational design strategies for high-performance single-atom NO3RR catalysts via coordination environment engineering.

2.
J Colloid Interface Sci ; 668: 399-411, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38685165

RESUMEN

Researchers are interested in single-atom catalysts with atomically scattered metals relishing the enhanced electrocatalytic activity for nitrogen reduction and 100 % metal atom utilization. In this paper, we investigated 18 transition metals (TM) spanning 3d to 5d series as efficient nitrogen reduction reaction (NRR) catalysts on defective 2D SiPV layered structures through first-principles calculation. A systematic screening identified Mo@SiPV, Nb@SiPV, Ta@SiPV and W@SiPV as superior, demonstrating enhanced ammonia synthesis with significantly lower limiting potentials (-0.25, -0.45, -0.49 and -0.15 V, respectively), compared to the benchmark -0.87 eV for the defective SiP. In addition, the descriptor ΔG*N was introduced to establish the relationship between the different NRR intermediates, and the volcano plot of the limiting potentials were determined for their potential-determining steps (PDS). Remarkably, the limiting voltage of the NRR possesses a good linear relationship with the active center TM atom Ɛd, which is a reliable descriptor for predicting the limiting voltage. Furthermore, we verified the stability (using Ab Initio Molecular Dynamics - AIMD) and high selectivity (UL(NRR)-UL(HER) > -0.5 V) of these four catalysts in vacuum and solvent environments. This study systematically demonstrates the strong catalytic potential of 2D TM@SiPV(TM = Mo, Nb, Ta, W) single-atom catalysts for nitrogen reduction electrocatalysis.

3.
Chemistry ; 30(6): e202303148, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-37943116

RESUMEN

Developing efficient nanostructured electrocatalysts for N2 reduction to NH3 under mild conditions remains a major challenge. The Fe-Mo cofactor serves as the archetypal active site in nitrogenase. Inspired by nitrogenase, we designed a series of heteronuclear dual-atom catalysts (DACs) labeled as FeMoN6-a Xa (a=1, 2, 3; X=B, C, O, S) anchored on the pore of g-C3 N4 to probe the impact of coordination on FeMo-catalyzed nitrogen fixation. The stability, reaction paths, activity, and selectivity of 12 different FeMoN6-a Xa DACs have been systematically studied using density functional theory. Of these, four DACs (FeMoN5 B1 , FeMoN5 O1 , FeMoN4 O2 , and FeMoN3 C3 ) displayed promising nitrogen reduction reaction (NRR) performance. Notably, FeMoN5 O1 stands out with an ultralow limiting potential of -0.11 V and high selectivity. Analysis of the density of states and charge/spin changes shows FeMoN5 O1 's high activity arises from optimal N2 binding on Fe initially and synergy of the FeMo dimer enabling protonation in NRR. This work contributes to the advancement of rational design for efficient NRR catalysts by regulating atomic coordination environments.

4.
Nanoscale ; 15(39): 16030-16038, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37782458

RESUMEN

Using solar photocatalytic CO2 reduction to produce high-value-added products is a promising solution to environmental problems caused by greenhouse gases. Metal phthalocyanine COFs possess a suitable band structure and strong light absorption ability, making them a promising candidate for photocatalytic CO2 reduction. However, the relationship between the electronic structure of these materials and photocatalytic properties, as well as the mechanism of photocatalytic CO2 reduction, is still unclear. Herein, the electronic structure of three MPc-TFPN-COFs (M = Ni, Co, Fe) and the reaction process of CO2 reduction to CO, HCOOH, HCHO and CH3OH were studied using DFT calculations. The calculated results demonstrate that these COFs have a good photo response to visible light and are new potential photocatalytic materials. Three COFs show different reaction mechanisms and selectivity in generating CO2 reduction products. NiPc-TFPN-COFs obtain CO through the reaction pathway of CO2 → COOH → CO, and the energy barrier of the rate-determining step is 2.82 eV. NiPc-TFPN-COFs and FePc-TFPN-COFs generate HCHO through CO2 → COOH → CO → CHO → HCHO, and the energy barrier of the rate step is 2.82 eV and 2.37 eV, respectively. Higher energies are required to produce HCOOH and CH3OH. This work is helping in understanding the mechanism of photocatalytic reduction of CO2 in metallophthalocyanine COFs.

5.
Dalton Trans ; 52(41): 14742-14746, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37823276

RESUMEN

A new beryllium-free deep-UV transparent NLO crystal Li(H2O)2Sc(SO4)2 features a two-dimensional [Sc(SO4)2] framework consisting of twisted [Sc3S4O9] units decorated by [LiO2(H2O)2] groups into a unique layer. Remarkably, Li(H2O)2Sc(SO4)2 exhibits a phase-matching SHG response of 0.7 × KDP and a deep-UV cutoff edge below 190 nm.

6.
J Phys Chem A ; 127(29): 6109-6115, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37449913

RESUMEN

In order to determine the polarizability and hyperpolarizability of a molecule, several key parameters need to be known, including the excitation energy of the ground and excited states, the transition dipole moment, and the difference of dipole moment between the ground and excited states. In this study, a machine-learning model was developed and trained to predict the molecular polarizability and second-order hyperpolarizability on a subset of QM9 data set. The density of states was employed as input to the model. The results demonstrated that the machine-learning model effectively estimated both polarizability and the order of magnitude of second-order hyperpolarizability. However, the model was unable to predict the dipole moment and first-order hyperpolarizability, suggesting limitations in its ability to predict the difference of dipole moment between the ground and excited states. The computational efficiency of machine-learning models compared to traditional quantum mechanical calculations enables the possibility of large-scale screening of molecules that satisfy specific requirements using existing databases. This work presents a potential solution for the efficient exploration and analysis of molecules on a larger scale.

7.
J Colloid Interface Sci ; 630(Pt B): 215-223, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36327724

RESUMEN

Electrocatalytic nitrogen reduction reaction (eNRR) is a promising method for the sustainable production of ammonia as an alternative to the traditional energy-intensive Haber-Bosch process. In this work, an efficient strategy by atomic spin regulation to promote NRR through Fe-transition metal (TM) hybrid heteronuclear dual-atom catalysts has been studied. By means of DFT computations, the stability, activity, and selectivity of 30 kinds of Fe-based dual-atoms anchored on N-doped porous graphene are systematically investigated to evaluate their catalytic performance. Fe/MoNC is screened as an excellent NRR catalyst with the limiting potentials of 0.63 V, and also suppresses HER. In the Fe/MoNC, the neighboring Fe atom regulates the spin state of the Mo center in MoN4 from high-spin state (2.63 µB) to medium-spin state (0.74 µB), which can effectively relieve the strong overlapping between Mo 4d orbital with the NxHy intermediates, promote the desorption of reaction product, and eventually achieve a lower limiting potential. Interestingly, the archetype of the active center of nitrogenase is also a FeMo-cofactor, which is consistent with our screening results. The work may provide new insight into the mechanism of nitrogenase, and promote the rational design of efficient NRR catalysts by atomic spin regulation.


Asunto(s)
Diatomeas , Catálisis , Nitrógeno , Amoníaco , Nitrogenasa
8.
ACS Omega ; 7(10): 8706-8716, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35309471

RESUMEN

Inspired by the recent practical application of two-dimensional (2D) nanomaterials as gas sensors, catalysts, and materials for waste gas disposal, herein, the adsorption behaviors of environmental gas molecules, including NO, CO, O2, CO2, NO2, H2O, H2S, and NH3, on the 2D pristine and defective MoSi2N4 (MSN) monolayers were systematically investigated using spin-polarized density functional theory (DFT) calculations. Our results reveal that all the gas molecules are physically adsorbed on the MSN surface with small charge transfer, but the electronic structures of NO, NO2, and O2 are obviously modified due to the in-gap states. The introduction of N vacancy on the MSN surface enhances the interaction between gas molecules and the substrate, especially for NO2 and O2. Interestingly, the adsorption type of NO and CO evolves from physisorption to chemisorption, which may be utilized in NO and CO catalytic reaction. Furthermore, the moderate adsorption strength and obvious changes in electronic properties of H2O and H2S on the defective MSN make them have promising prospects in highly sensitive and reusable gas sensors. This work offers several promising gas sensors based on the MSN monolayer and also provides a theoretical reference of other related 2D materials in the field of gas sensors, catalysts, and toxic gas disposal.

9.
Chem Sci ; 14(1): 136-142, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36605736

RESUMEN

Nonlinear optical (NLO) crystals featuring a strong second-harmonic generation (SHG) response and suitable birefringence to achieve phase-matching are in urgent demand in industrial and commercial applications. Based on the substitution strategy, two new NLO lead-iodide formates, K2[PbI2(HCOO)2] and Rb2[PbI2(HCOO)2], have been successfully synthesized using a moderate mixed-solvothermal method. K2[PbI2(HCOO)2] and Rb2[PbI2(HCOO)2] exhibit strong phase-matching SHG responses of 8 and 6.8 × KDP, respectively, a suitable birefringence and transparent window covering most of the visible light and mid-IR region. Crystal structures and theoretical calculations unveil that the origins of the strong SHG response and suitable birefringence can be credibly attributed to the oriented arrangement of the highly distorted [PbI2O4] hexa-coordinated polyhedra, which are consistent in their local dipole moments, as well. This research provides a new strategy to explore high-performance NLO crystals.

10.
Chemistry ; 28(4): e202103687, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34651354

RESUMEN

Nonlinear optical (NLO) crystals are widely applied in information technology, micro-manufacturing and medical treatment. Herein, a new lead mixed halide with strong second-harmonic generation (SHG) response, Cs3 Pb2 (CH3 COO)2 Br3 I2 , has been designed and rationally synthesized. Cs3 Pb2 (CH3 COO)2 Br3 I2 represents the rare NLO crystal featuring that three different anions (I- , Br- and O2- ) simultaneously coordinate the Pb(II) atom to form a severely distorted [PbBr2 I2 O2 ] polyhedron with a large polarizability. Remarkably, Cs3 Pb2 (CH3 COO)2 Br3 I2 not only exhibits a very strong phase-matching SHG response of 9×KH2 PO4 (KDP), but also possesses a large birefringence (0.27@1064 nm) and high laser damage threshold (LDT). The strong SHG effect of Cs3 Pb2 (CH3 COO)2 Br3 I2 mainly originates from the oriented arrangement of [Pb2 Br3 I2 ] chains. This study points out an effective strategy to develop new NLO crystals with strong SHG response.

11.
Inorg Chem ; 61(2): 1130-1135, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34964612

RESUMEN

Nonlinear optical (NLO) materials are playing an increasingly vital role in laser science and technology. Herein, we report a new lead formate, KCs2Pb2(HCOO)2Cl5, successfully synthesized by using mild mix-solvothermal methods. By the anionic substitution of a [CH3COO] group with a [HCOO] group, the dipole moment of the distorted [PbCl4O2] polyhedron is increased. In contrast, polarization from the anionic group and the volume of the unit cell are reduced. Hence, KCs2Pb2(HCOO)2Cl5 possesses a strong second-harmonic-generation (SHG) response of 4.2 times that of KH2PO4 (KDP), a transparent window covering 0.43-1.87 µm, a large band gap of 3.52 eV, and moderate birefringence (0.11@1064 nm). Systematic theoretical calculations illustrate the origin of the linear and nonlinear optical properties of KCs2Pb2(HCOO)2Cl5. This research provides a viable strategy for the design and synthesis of new NLO crystals.

12.
Inorg Chem ; 60(22): 17364-17370, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34710323

RESUMEN

The unity of structure-property design and practical synthesis is a key to develop nonlinear optical (NLO) materials. However, many designed structures are hard to get because of the incapability of controlling the arrangement of structural motifs. After careful synthesis, we successfully obtained a new NLO crystal with expected properties, KWO3F, which features a long-range anion-ordered while directed parallel arrangement of [WO5F] d0 transition metal fluorooxo-functional (d0 [TMOF]) motifs. This arrangement is vital to achieve a strong second-harmonic generation (SHG) response, which is proved by dipole moment analyses and theoretical calculations. Remarkably, KWO3F possesses a strong phase-matching SHG response (3 × KDP), high thermal stability (stable up to 350 °C in air), a large laser damage threshold (LDT, 129.7 MW/cm2), a wide transparent window (0.5-10 µm), and a suitable birefringence (0.088 @ 1064 nm). Our research demonstrated that the introduction of the NLO-active d0 [TMOF] motif is an effective strategy to design new potential NLO materials.

13.
Chemistry ; 27(51): 12976-12980, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34258801

RESUMEN

The discovery of new nonlinear optical (NLO) crystals with excellent properties is in urgently demand because of their ability to generate coherent light. Herein, we report an unique NLO lead bromide formate, KCs2 [Pb2 Br5 (HCOO)2 ], which has been synthesized by a mix-solvothermal method. KCs2 [Pb2 Br5 (HCOO)2 ] exhibits strong phase-matching second-harmonic generation (SHG) response (6.5×KDP), large birefringence (0.16@ 1064 nm), and a wide transparent window in most visible light and mid-IR region. Interestingly, KCs2 [Pb2 Br5 (HCOO)2 ] features a polar 3D lead-bromide framework in which adjacent Pb-Br layers containing coplanar Pb6 Br6 rings are not only parallel to each other, but also orient in the same direction. These oriented arrangements are responsible for the strong SHG response and large birefringence that are elucidated by both local dipole moment and theoretical calculations. This research provides a new strategy to explore subsequent NLO crystals.

14.
Inorg Chem ; 60(13): 9263-9267, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34165289

RESUMEN

Metal-rich chalcogenides with unique network architectures are rare but are of considerable interest because of their intriguing physical properties. In this work, a novel quaternary thioantimonate, Rb2CuSb7S12, has been discovered by a facile surfactant-thermal reaction. It crystallizes monoclinic space group P1̅ (No. 2) and exhibits a unique Sb-rich three-dimensional (3D) [CuSb7S12]2- framework surrounded by charge-compensating Rb+ cations. It is interesting to note that the Cu/Sb ratio of Rb2CuSb7S12 represents the lowest limit in the quaternary A/Cu/Sb/Q (A = alkali metals; Q = chalcogen) system. Moreover, Rb2CuSb7S12 shows rapid response and good reproducibility based on the photoelectrochemical tests. This study opens up opportunities for discovering the desirable physical properties in metal-rich chalcogenides.

15.
Inorg Chem ; 60(8): 5821-5828, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33779158

RESUMEN

Nonlinear-optical (NLO) crystal is an important photoelectric functional material. In this work, a new NLO titanium iodate, (H3O)2Ti(IO3)6, along with Ti(IO3)4 has been synthesized under facile conditions. The space group of (H3O)2Ti(IO3)6 is the chiral noncentrosymmetric group R3 (No. 146), with an interesting three-dimensional framework, while that of Ti(IO3)4 is the centrosymmetric space group P1̅ (No. 2) containing one-dimensional chains. Thermogravimetric analysis shows that (H3O)2Ti(IO3)6 and Ti(IO3)4 have no weight loss below 220 and 390 °C, respectively. In addition, (H3O)2Ti(IO3)6 not only is thermally stable up to 200 °C in an air atmosphere but also is stable in water. (H3O)2Ti(IO3)6 has a moderate-intensity second-harmonic-generation (SHG) response (1.4×KDP), a large laser-induced damage threshold (46×AgGaS2), and high transmittance in the wavelength ranges of 0.5-1.4 and 2.5-10 µm. Both local dipole moment and systematic theoretical calculations reveal that the SHG response of (H3O)2Ti(IO3)6 is mainly because of the combined effect of [TiO6] octahedra and IO3 and IO4 units. In a word, (H3O)2Ti(IO3)6 exhibits good NLO performances, as well as water resistance and facile growth of a single crystal with high quality, indicating its potential application as NLO materials in the visible and mid-IR regions, especially the visible region.

16.
Inorg Chem ; 60(7): 5290-5296, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33729802

RESUMEN

The substitution of alkali metal cation or halogen anion based on nonlinear crystals is an effective strategy to exploit new optical materials. The strategy has been successfully expanded to discover two new lead halides, Rb3Pb2(CH3COO)2X5 (X = Br, Cl). The substitution of the Cs+ cation with a Rb+ cation can not only increase the local dipole moment of the distorted [PbBr4O2] polyhedron but also reduce the cell unit, resulting in a large net macroscopic polarization. Therefore, Rb3Pb2(CH3COO)2Br5 possesses a strong second-harmonic generation (SHG) response (6 × KDP) and a large birefringence (0.18@1064 nm). Furthermore, by the substitution of the Br- anion with a Cl- anion, Rb3Pb2(CH3COO)2Cl5 exhibits a high laser damage threshold (LDT, 84 × AgGaS2) and a short UV cutoff edge of 287 nm, as well as moderate SHG response (3 × KDP) and birefringence (0.11@1064 nm). Detailed theory calculations elucidate the origin of the linear and nonlinear optical properties of these compounds.

17.
Inorg Chem ; 60(7): 4357-4361, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33710855

RESUMEN

Diamond-like (DL) chalcophosphates, which possess the merits of impressive second-harmonic-generation (SHG) responses, strong laser-induced damage thresholds, and low melting points, are highly desirable for IR nonlinear-optical (NLO) applications. Herein, a new quaternary DL chalcophosphate, Cu5Zn0.5P2S8, is successfully discovered, taking known Cu3PS4 as the template via a single-site aliovalent-substitution strategy. It crystallizes in the orthorhombic system with noncentrosymmetric space group Pmn21, and the 3D DL structure is built by corner-shared [(Cu/Zn)S4], [CuS4], and [PS4] tetrahedra. Compared with its parent Cu3PS4, Cu5Zn0.5P2S8 exhibits a good phase-matching capability and a sharply enhanced SHG effect (10Cu3PS4) benefiting from partial Zn substitution. Moreover, the structure-performance relationships have been illustrated by means of theoretical investigations. Such an aliovalent-substitution strategy based on known DL semiconductors might be widely applied for the discovery of high-performance IR NLO crystals.

18.
Angew Chem Int Ed Engl ; 60(4): 2116-2119, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33058514

RESUMEN

Nonlinear optical (NLO) crystals are the key component in solid-state lasers. New second-harmonic generation (SHG) effective halides, Cs3 Pb2 (CH3 COO)2 X5 (X=I, Br), have been rationally synthesized by introducing acetate groups into lead halide perovskites under moderate solvothermal conditions. Cs3 Pb2 (CH3 COO)2 X5 (X=I, Br) feature highly oriented anionic chains constructed by distorted [PbX4 O2 ] (X=I, Br) polyhedrons. Both the theoretical studies and the dipole moment calculations uncover that their SHG effects are mainly originated from the distorted [PbX4 O2 ] (X=I, Br) polyhedrons. Remarkably, Cs3 Pb2 (CH3 COO)2 I5 exhibits strong phase-matching SHG response (8×KDP) and large birefringence (0.26@ 1064 nm). Moreover, Cs3 Pb2 (CH3 COO)2 X5 (X=I, Br) also possess high laser damage threshold (LDT) which are almost 27 and 41 times that of AgGaS2 , respectively.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 239: 118493, 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32470811

RESUMEN

A suitable substitution of the lead element in lead-based halide perovskites is a feasible approach to explore lead-free perovskite material with excellent stability, tunable band gap, high optical absorption, and better photovoltaic performance. In this study, the toxic lead is replaced by mixing Ba/Si and Ba/Sn to develop environmentally friendly perovskite materials with excellent properties. MABa0.125Sn0.875I3 has shown evidently improved properties in terms of structural stability and suitable band gap, which indicates that MABa0.125Sn0.875I3 can become the most potential material for applications in single-junction solar cells. Moreover, MABa0.50Sn0.50I3 and MABa0.25Sn0.75I3 can be promising materials for the top cell in the tandem architecture due to their proper band gaps (1.70-1.80 eV). Moreover, the optical absorption coefficients of the proposed lead-free perovskites are stronger than that of MAPbI3 in the range of 500-800 nm. Our work can provide new insights into exploring lead-free perovskite solar cells with excellent stability and suitable band gap.

20.
Phys Chem Chem Phys ; 22(16): 8658-8666, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32270851

RESUMEN

Inorganic ferroelectric perovskite oxides are more stable than hybrid perovskites. However, their solar energy harvesting efficiency is not so good. Here, by constructing a series of BiFeO3-based devices (solar cells), we investigated three factors that influence the photovoltaic performance, namely, spontaneous polarization, terminated ion species in the interface between BiFeO3 and the electrode, and polarized light irradiation. This work was carried out under the framework of the density functional theory combined with the non-equilibrium Green's function theory under a built-in electric field or finite bias. The results showed that (1) the photocurrent is larger only under a suitable electronic band gap rather than larger spontaneous polarization; (2) the photocurrent reaches the largest value in the Bi3+ ion-terminated interface than in the case of Fe3+ or O2- with the SrTiO3 electrode; (3) the photocurrent can be largely enhanced if the polarized direction of the monochromatic light is perpendicular to the spontaneous polarization direction. These results would deepen the understanding of some experimental results of BiFeO3-based solar cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA