Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 14(9)2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-34066880

RESUMEN

To reveal the effect of Mg treatment on the microstructure evolution behavior in the actual steel welding process, the microstructure and properties of Al-deoxidized high-strength ship plate steel with Mg addition were analyzed after double-side submerged arc welding. It was found that the Al-Mg-O + MnS inclusion formed under 26 ppm Mg treatment could promote acicular ferrite (AF) nucleation in the coarse-grained heat-affected zone (CGHAZ) and inhibit the formation of widmanstätten ferrite and coarse grain boundary ferrite. In the fine-grained heat-affected zone (FGHAZ) and intercritical heat-affected zone (ICHAZ), polygonal ferrite and pearlite were dominant. Al-Mg-O+MnS cannot play a role in inducing AF, but the grain size of ferrite was refined by Mg addition. The impact toughness in HAZ of the Mg-added steel was higher than that of Mg-free steel. With the heat-input rising from 29.55 to 44.11 kJ/cm, it remained relatively stable in Mg-treated steel. From the fusion line to the base metal, the micro-hardness of the fusion zone, CGHAZ, ICHAZ and FGHAZ decreased to some extent after Mg addition, which means the cold cracking tendency in the welding weak zone could be reduced. Finally, the mechanisms of Mg-containing inclusion-induced AF were also systematically discussed.

2.
Materials (Basel) ; 11(10)2018 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-30360446

RESUMEN

Two kinds of filler materials were used to join dissimilar alloys between a new cast superalloy K4750 and Hastelloy X by tungsten gas arc welding (GTAW). The segregation behavior, interfacial microstructure and mechanical properties of the dissimilar joints were evaluated. The results show that both filler materials can be used to obtain sound dissimilar joints successfully. Microstructural observation show that no obvious cracking is observed in the joints achieved by both filler materials. The segregation extent of various elements in Hastelloy X weld metal is more severe than that in the K4750 weld metal. No unmixed zones were observed at the interfaces. Transition areas with the chemical compositions various between the K4750 alloy and the Hastelloy X alloy were found at the joint interfaces. The maximum width of the transition area between the K4750 weld metal and Hastelloy X base metal is smaller than that between the Hastelloy X weld metal and K4750 base metal. The ultimate tensile strength and yield strength of the joints with Hastelloy X filler material are slightly higher than those with K4750 filler material, however, the K4750 filler material results in a higher total elongation and fusion zone microhardness than those with Hastelloy X filler material. Both dissimilar joints fractured with a ductile feature which exhibits tearing edges and dimples. Hastelloy X filler material is suggested to be more suitable for joining of K4750 superalloy and Hastelloy X dissimilar metals in terms of obtaining superior comprehensive mechanical properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA