Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 1122, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39261709

RESUMEN

Colistin is one of the last-resort antibiotics in treating infections caused by multidrug-resistant (MDR) pathogens. Unfortunately, the emergence of colistin-resistant gram-negative strains limit its clinical application. Here, we identify an FDA-approved drug, valnemulin (Val), exhibit a synergistic effect with colistin in eradicating both colistin-resistant and colistin-susceptible gram-negative pathogens both in vitro and in the mouse infection model. Furthermore, Val acts synergistically with colistin in eliminating intracellular bacteria in vitro. Functional studies and transcriptional analysis confirm that the combinational use of Val and colistin could cause membrane permeabilization, proton motive force dissipation, reduction in intracellular ATP level, and suppression in bacterial motility, which result in bacterial membrane disruption and finally cell death. Our findings reveal the potential of Val as a colistin adjuvant to combat MDR bacterial pathogens and treat recalcitrant infections.


Asunto(s)
Antibacterianos , Colistina , Diterpenos , Farmacorresistencia Bacteriana Múltiple , Bacterias Gramnegativas , Infecciones por Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana , Colistina/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Animales , Antibacterianos/farmacología , Ratones , Diterpenos/farmacología , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/microbiología , Bacterias Gramnegativas/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Humanos
2.
Biochim Biophys Acta Gen Subj ; 1868(10): 130669, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38996990

RESUMEN

BACKGROUND: Dysregulation of Rho-associated coiled coil-containing protein kinases (ROCKs) is involved in the metastasis and progression of various malignant tumors. However, how one of the isomers, ROCK1, regulates glycolysis in tumor cells is incompletely understood. Here, we attempted to elucidate how ROCK1 influences pancreatic cancer (PC) progression by regulating glycolytic activity. METHODS: The biological function of ROCK1 was analyzed in vitro by establishing a silenced cell model. Coimmunoprecipitation confirmed the direct binding between ROCK1 and c-MYC, and a luciferase reporter assay revealed the binding of c-MYC to the promoter of the PFKFB3 gene. These results were verified in animal experiments. RESULTS: ROCK1 was highly expressed in PC tissues and enriched in the cytoplasm, and its high expression was associated with a poor prognosis. Silencing ROCK1 inhibited the proliferation and migration of PC cells and promoted their apoptosis. Mechanistically, ROCK1 directly interacted with c-MYC, promoted its phosphorylation (Ser 62) and suppressed its degradation, thereby increasing the transcription of the key glycolysis regulatory factor PFKFB3, enhancing glycolytic activity and promoting PC growth. Silencing ROCK1 increased gemcitabine (GEM) sensitivity in vivo and in vitro. CONCLUSIONS: ROCK1 promotes glycolytic activity in PC cells and promotes PC tumor growth through the c-MYC/PFKFB3 signaling pathway. ROCK1 knockdown can inhibit PC tumor growth in vivo and increase the GEM sensitivity of PC tumors, providing a crucial clinical therapeutic strategy for PC.


Asunto(s)
Proliferación Celular , Glucólisis , Neoplasias Pancreáticas , Fosfofructoquinasa-2 , Proteínas Proto-Oncogénicas c-myc , Quinasas Asociadas a rho , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/genética , Fosfofructoquinasa-2/metabolismo , Fosfofructoquinasa-2/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Animales , Línea Celular Tumoral , Ratones , Transducción de Señal , Apoptosis , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Movimiento Celular , Gemcitabina , Masculino
3.
Comput Struct Biotechnol J ; 23: 2388-2406, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38882682

RESUMEN

Antimicrobial peptides are promising therapeutic agents for treating drug-resistant bacterial disease due to their broad-spectrum antimicrobial activity and decreased susceptibility to evolutionary resistance. In this study, three novel cathelicidin antimicrobial peptides were identified from Thamnophis sirtalis, Balaenoptera musculus, and Lipotes vexillifer by protein database mining and sequence alignment and were subsequently named TS-CATH, BM-CATH, and LV-CATH, respectively. All three peptides exhibited satisfactory antibacterial activity and broad antibacterial spectra against clinically isolated E. coli, P. aeruginosa, K. pneumoniae, and A. baumannii in vitro. Among them, TS-CATH displayed the best antimicrobial/bactericidal activity, with a rapid elimination efficiency against the tested drug-resistant gram-negative bacteria within 20 min, and exhibited the lowest cytotoxicity toward mammalian cells. Furthermore, TS-CATH effectively enhanced the survival rate of mice with ceftazidime-resistant E. coli bacteremia and promoted wound healing in meropenem-resistant P. aeruginosa infection. These results were achieved through the eradication of bacterial growth in target organs and wounds, further inhibiting the systemic dissemination of bacteria and the inflammatory response. TS-CATH exhibited direct antimicrobial activity by damaging the inner and outer membranes, resulting in leakage of the bacterial contents at super-MICs. Moreover, TS-CATH disrupted the bacterial respiratory chain, which inhibited ATP synthesis and induced ROS formation, significantly contributing to its antibacterial efficacy at sub-MICs. Overall, TS-CATH has potential for use as an antibacterial agent.

4.
Arch Virol ; 169(6): 130, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807015

RESUMEN

Qingke Pingchuan granules (QPGs), which contain Houttuynia cordata Thunb, Fritillaria cirrhosa, fired licorice, and fired bitter almonds, among other components, can clear heat and ventilate the lungs, relieving cough and asthma. Clinically, QPGs are mainly used to treat cough, asthma, fever and other discomforts caused by acute or chronic bronchitis. In this study, the antiviral activity of QPGs against respiratory syncytial virus (RSV), influenza A virus A/FM/1/47 (H1N1), oseltamivir-resistant H1N1, A/Beijing/32/92 (H3N2), Sendai virus, and human adenovirus type 3 in Hep-2 or MDCK cells was evaluated using the CCK-8 method, and the cytotoxicity of QPGs to these two cell lines was tested. The effect of QPGs on mice infected with influenza A virus A/FM/1/47 (H1N1) was evaluated by measuring body weight, survival time, and survival rate, as well as virus titers and lesions in the lungs and levels of inflammatory factors in serum. In addition, the expression of TLR-7-My88-NF-κB signaling pathway-related proteins in lung tissues was analyzed by Western blotting and qRT-PCR. The results showed that QPGs had a potent inhibitory effect on the six viruses tested in vitro. Interestingly, QPGs also displayed particularly pronounced antiviral activity against H1N1-OC, similar to that of oseltamivir, a well-known antiviral drug. QPGs effectively protected mice from infection by H1N1, as indicated by significantly increased body weights, survival times, and survival rates and reduced lung virus titers of inflammatory factors and lung tissue injury. The levels of TLR-7-MyD88-NF-κB-pathway-related proteins in the lung tissue of infected mice were found to be decreased after QPG treatment, thereby alleviating lung injury caused by excessive release of inflammatory factors. Taken together, these findings indicate that QPGs have satisfactory activity against influenza virus infection.


Asunto(s)
Antivirales , Medicamentos Herbarios Chinos , Subtipo H1N1 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Ratones , Medicamentos Herbarios Chinos/farmacología , Humanos , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/virología , Perros , Células de Riñón Canino Madin Darby , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/fisiología , Ratones Endogámicos BALB C , Pulmón/virología , Pulmón/efectos de los fármacos , Pulmón/patología , Línea Celular , Houttuynia/química , Gripe Humana/tratamiento farmacológico , Gripe Humana/virología , FN-kappa B/metabolismo , Femenino , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/fisiología
5.
Artículo en Inglés | MEDLINE | ID: mdl-38587584

RESUMEN

Antimicrobial peptides (AMPs) have the potential to treat multidrug-resistant bacterial infections. Cathelicidins are a class of cationic antimicrobial peptides that are found in nearly all vertebrates. Herein, we determined the mature peptide region of Alligator sinensis cathelicidin by comparing its cathelicidin peptide sequence with those of other reptiles and designed nine peptide mutants based on the Alligator sinensis cathelicidin mature peptide. According to the antibacterial activity and cytotoxicity screening, the peptide AS-12W demonstrated broad-spectrum antibacterial activity and exhibited low erythrocyte hemolytic activity. In particular, AS-12W exhibited strong antibacterial activity and rapid bactericidal activity against carbapenem-resistant Pseudomonas aeruginosa in vitro. Additionally, AS-12W effectively removed carbapenem-resistant P. aeruginosa from blood and organs in vivo, leading to improved survival rates in septic mice. Furthermore, AS-12W exhibited good stability and tolerance to harsh conditions such as high heat, high salt, strong acid, and strong alkali, and it also displayed high stability toward trypsin and simulated gastric fluid (SGF). Moreover, AS-12W showed significant anti-inflammatory effects in vitro by inhibiting the production of proinflammatory factors induced by lipopolysaccharide (LPS). Due to its antibacterial mechanism against Escherichia coli, we found that this peptide could neutralize the negative charge on the surface of the bacteria and disrupt the integrity of the bacterial cell membrane. In addition, AS-12W has the ability to bind to the genomic DNA of bacteria and stimulate the production of reactive oxygen species (ROS) within bacteria, which is believed to be the reason for the good antibacterial activity of AS-12W. These results demonstrated that AS-12W exhibits remarkable antibacterial activity, particularly against carbapenem-resistant P. aeruginosa. Therefore, it is a potential candidate for antibacterial drug development.

6.
Cancer Lett ; 586: 216695, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38325769

RESUMEN

Given the limitations of the response rate and efficacy of immune checkpoint inhibitors (ICIs) in clinical applications, exploring new therapeutic strategies for cancer immunotherapy is necessary. We found that 5-(3,4,5-trimethoxybenzoyl)-4-methyl-2-(p-tolyl)imidazole (BZML), a microtubule-targeting agent, exhibited potent anticancer activity by inducing mitotic catastrophe in A549/Taxol and L929 cells. Nuclear membrane disruption and nuclease reduction provided favorable conditions for cGAS-STING pathway activation in cells with mitotic catastrophe. Similar results were obtained in paclitaxel-, docetaxel- and doxorubicin-induced mitotic catastrophe in various cancer cells. Notably, the surface localization of CALR and MHC-I and the release of HMGB1 were also significantly increased in cells with mitotic catastrophe, but not in apoptotic cells, suggesting that mitotic catastrophe is an immunogenic cell death. Furthermore, activated CD8+T cells enhanced the anticancer effects originating from mitotic catastrophe induced by BZML. Inhibiting the cGAS-STING pathway failed to affect BZML-induced mitotic catastrophe but could inhibit mitotic catastrophe-mediated anticancer immune effects. Interestingly, the expression of p-TBK1 first increased and then declined; however, autophagy inhibition reversed the decrease in p-TBK1 expression and enhanced mitotic catastrophe-mediated anticancer immune effects. Collectively, the inhibition of autophagy can potentiate mitotic catastrophe-mediated anticancer immune effects by regulating the cGAS-STING pathway, which explains why the anticancer immune effects induced by chemotherapeutics have not fully exerted their therapeutic efficacy in some patients and opens a new area of research in cancer immunotherapy.


Asunto(s)
Nucleotidiltransferasas , Paclitaxel , Humanos , Paclitaxel/farmacología , Nucleotidiltransferasas/metabolismo , Muerte Celular , Inmunidad , Autofagia
7.
Microbiol Spectr ; 12(1): e0099523, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38018988

RESUMEN

IMPORTANCE: S. pneumoniae is a major human pathogen that undergoes a spontaneous and reversible phase variation that allows it to survive in different host environments. Interestingly, we found hsdSA , a gene that manipulated the phase variation, promoted the survival and replication of S. pneumoniae in macrophages by regulating EV production and EV-associated PLY. More importantly, here we provided the first evidence that higher EV-associated PLY (produced by D39) could form LAPosomes that were single membrane compartments containing S. pneumoniae, which are induced by integrin ß1/NOX2/ROS pathway. At the same time, EV-associated PLY increased the permeability of lysosome membrane and induced an insufficient acidification to escape the host killing, and ultimately prolonged the survival of S. pneumoniae in macrophages. In contrast, lower EV-associated PLY (produced by D39ΔhsdSA ) activated ULK1 recruitment to form double-layered autophagosomes to eliminate bacteria.


Asunto(s)
Streptococcus pneumoniae , Estreptolisinas , Humanos , Streptococcus pneumoniae/genética , Estreptolisinas/genética , Proteínas Bacterianas/genética , Macrófagos/metabolismo
8.
Pharmaceutics ; 15(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38140124

RESUMEN

The interactions between active pharmaceutical ingredients (APIs) and excipients may lead to API degradation, thereby affecting the safety and efficacy of drug products. Cbf-14 is a synthetic peptide derived from Cathelicidin-BF, showing potential for bacterial and fungal infections. In order to assess impurities in Cbf-14 gel, we developed a two-dimensional liquid chromatography coupled with quadrupole/time-of-flight mass spectrometric method. A total of eleven peptide degradation impurities were identified and characterized. Furthermore, the compatibility tests were conducted to evaluate the interactions of Cbf-14 with glycerol and methylcellulose, respectively. The results revealed that the impurities originated from condensation reactions between Cbf-14 and aldehydes caused by glycerol degradation. Several aldehydes were employed to validate this hypothesis. The formation mechanisms were elucidated as Maillard reactions between primary amino groups of Cbf-14 and aldehydes derived from glycerol degradation. Additionally, the compatibility of Cbf-14 with glycerol from different sources and with varying storage times was investigated. Notably, the interaction products in the gel increased with extended storage time, even when fresh glycerol for injection was added. This study offers unique insights into the compatibility study of peptides and glycerol, contributing to the ongoing quality study of Cbf-14 gel. It also serves as a reference for the design of other peptide preparations and excipients selections.

10.
Biochim Biophys Acta Rev Cancer ; 1878(5): 188965, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37625527

RESUMEN

Mitotic catastrophe is distinct from other cell death modes due to unique nuclear alterations characterized as multi and/or micronucleation. Mitotic catastrophe is a common and virtually unavoidable consequence during cancer therapy. However, a comprehensive understanding of mitotic catastrophe remains lacking. Herein, we summarize the anticancer drugs that induce mitotic catastrophe, including microtubule-targeting agents, spindle assembly checkpoint kinase inhibitors, DNA damage agents and DNA damage response inhibitors. Based on the relationships between mitotic catastrophe and other cell death modes, we thoroughly evaluated the roles played by mitotic catastrophe in cancer treatment as well as its advantages and disadvantages. Some strategies for overcoming its shortcomings while fully utilizing its advantages are summarized and proposed in this review. We also review how mitotic catastrophe regulates cancer immunotherapy. These summarized findings suggest that the induction of mitotic catastrophe can serve as a promising new therapeutic approach for overcoming apoptosis resistance and strengthening cancer immunotherapy.


Asunto(s)
Neoplasias , Humanos , Muerte Celular , Inmunoterapia , Apoptosis , Daño del ADN
11.
Peptides ; 166: 171040, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37295650

RESUMEN

Cbf-14 with the sequence RLLRKFFRKLKKSV, is an effective antimicrobial peptide derived from a cathelin-like domain. Previous reports have demonstrated that Cbf-14 not only exerts antimicrobial activity against penicillin-resistant bacteria but also alleviates bacterial-induced inflammation in E. coli BL21 (DE3)-NDM-1-infected mice. In this article, we demonstrated that Cbf-14 can effectively reduce RAW 264.7 intracellular infection caused by clinical strain E. coli and alleviate the inflammatory response of cells and improve cell survival after infection. Therefore, we established the LPS-stimulated RAW 264.7 cell inflammation model to uncover the molecular mechanisms of the peptide Cbf-14 in anti-inflammatory activity. The results reveal that Cbf-14 can decrease LPS-induced ROS secretion by blocking the membrane translocation of p47-phox subunits and suppressing p47-phox protein phosphorylation. Meanwhile, this peptide can down-regulate the over-expression of iNOS, and finally inhibit the NO excessive secretion from RAW 264.7 macrophages stimulated by LPS. Moreover, Cbf-14 also down-regulates the expression levels of p-IκB and p-p65 and inhibits the nuclear translocation of NF-κB through blocking MAPK- and/or PI3K-Akt signaling pathways. Overall, Cbf-14 exhibits anti-inflammatory activity through inhibiting NF-κB activity and ROS production via PI3K- Akt signaling pathway.


Asunto(s)
FN-kappa B , Proteínas Proto-Oncogénicas c-akt , Animales , Ratones , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Escherichia coli/metabolismo , Lipopolisacáridos , Transducción de Señal , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamación/metabolismo , Péptidos/uso terapéutico , Óxido Nítrico
12.
Microb Biotechnol ; 16(9): 1755-1773, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37329166

RESUMEN

Polymyxin resistance is conferred by MCR-1 (mobile colistin resistance 1)-induced lipopolysaccharide (LPS) modification of G- bacteria. However, the peptide MSI-1 exerts potent antimicrobial activity against mcr-1-carrying bacteria. To further investigate the potential role of MCR-1 in improving bacterial virulence and facilitating immune evasion, and the immunomodulatory effect of peptide MSI-1, we first explored outer membrane vesicle (OMV) alterations of mcr-1-carrying bacteria in the presence and absence of sub-MIC MSI-1, and host immune activation during bacterial infection and OMV stimulation. Our results demonstrated that LPS remodelling induced by MCR-1 negatively affected OMV formation and protein cargo by E. coli. In addition, MCR-1 diminished LPS-stimulated pyroptosis but facilitated mitochondrial dysfunction, further aggravating apoptosis in macrophages induced by OMVs of E. coli. Similarly, TLR4-mediated NF-κB activation was markedly alleviated once LPS was modified by MCR-1. However, peptide MSI-1 at the sub-MIC level inhibited the expression of MCR-1, further partly rescuing OMV alteration and attenuation of immune responses in the presence of MCR-1 during both infection and OMV stimulation, which can be exploited for anti-infective therapy.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Lipopolisacáridos , Evasión Inmune , Colistina/farmacología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Péptidos/farmacología , Farmacorresistencia Bacteriana , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
13.
Amino Acids ; 55(1): 101-112, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36333524

RESUMEN

Infections induced by fungi, especially the drug-resistant fungi, are difficult clinical problems. Conventional antifungal treatment is effective but due to resistance, treatment failure, and treatment-related toxicity, there is a need for new antifungal drugs. In this study, SA-2 (YYRRLLRVLRRRW) was derived from Cystatin-SA, a saliva protein with a molecular weight of 14 kDa. Meanwhile, the structure-activity of SA-2 and its mutants was also studied. We detected the antimicrobial activity and cytotoxicity of SA-2 and found that SA-2 had a low cytotoxicity toward mammalian cells but a good inhibitory effect on Candida albicans (C. albicans) and Cryptococcus neoformans (C. neoformans), with MIC values of 16-64 µg/mL and 8-32 µg/mL, respectively. Interestingly, SA-2 effectively killed fluconazole-resistant C. neoformans and C. albicans within 12 h. This antifungal activity against fluconazole-resistant fungi was comparable to that of amphotericin B. In addition, the C. neoformans-infected mice model was established to evaluate the anti-infective activity of SA-2 in vivo. Results showed that SA-2 significantly reduced the counts of fungi in lung and brain tissues to protect fluconazole-resistant C. neoformans-infected mice from death without changing mice body weights. Moreover, the dramatically increased pro-inflammatory cytokines TNF-α, IL-6 and IL-1ß induced by intranasal infection of C. neoformans could be obviously declined due to the treatment of SA-2, which may be attributed to the elimination of C. neoformans in time in the infected tissue. For the mode of actions underlying SA-2 against C. neoformans, we found that the cationic peptide SA-2 could adhere to the negatively charged fungal cell membrane to increase the surface potential of C. neoformans in a dose-dependent manner, and finally disrupted the integrity of fungal cell membrane, reflecting as a 60% positive rate of propidium iodide uptake of C. neoformans cells after SA-2 (4 × MIC) treatment. Our study indicated that SA-2 has the potential to develop as a new therapeutic agent against infection induced by drug-resistant fungi.


Asunto(s)
Cryptococcus neoformans , Cistatinas , Animales , Ratones , Antifúngicos/farmacología , Fluconazol/farmacología , Pruebas de Sensibilidad Microbiana , Candida albicans , Cistatinas/farmacología , Mamíferos
14.
Microb Cell Fact ; 21(1): 174, 2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36030199

RESUMEN

BACKGROUND: Saccharomyces cerevisiae is often used as a cell factory for the production of S-adenosyl-L-methionine (SAM) for diverse pharmaceutical applications. However, SAM production by S. cerevisiae is negatively influenced by glucose repression, which is regulated by a serine/threonine kinase SNF1 complex. Here, a strategy of alleviating glucose repression by deleting REG1 (encodes the regulatory subunit of protein phosphatase 1) and overexpressing SNF1 (encodes the catalytic subunit of the SNF1 complex) was applied to improve SAM production in S. cerevisiae. SAM production, growth conditions, glucose consumption, ethanol accumulation, lifespan, glycolysis and amino acid metabolism were analyzed in the mutant strains. RESULTS: The results showed that the multiple effects of REG1 deletion and/or SNF1 overexpression exhibited a great potential for improving the SAM production in yeast. Enhanced the expression levels of genes involved in glucose transport and glycolysis, which improved the glucose utilization and then elevated the levels of glycolytic intermediates. The expression levels of ACS1 (encoding acetyl-CoA synthase I) and ALD6 (encoding aldehyde dehydrogenase), and the activity of alcohol dehydrogenase II (ADH2) were enhanced especially in the presence of excessive glucose levels, which probably promoted the conversion of ethanol in fermentation broth into acetyl-CoA. The gene expressions involved in sulfur-containing amino acids were also enhanced for the precursor amino acid biosynthesis. In addition, the lifespan of yeast was extended by REG1 deletion and/or SNF1 overexpression. As expected, the final SAM yield of the mutant YREG1ΔPSNF1 reached 8.28 g/L in a 10-L fermenter, which was 51.6% higher than the yield of the parent strain S. cerevisiae CGMCC 2842. CONCLUSION: This study showed that the multiple effects of REG1 deletion and SNF1 overexpression improved SAM production in S. cerevisiae, providing new insight into the application of the SNF1 complex to abolish glucose repression and redirect carbon flux to nonethanol products in S. cerevisiae.


Asunto(s)
Proteína Fosfatasa 1 , Proteínas Serina-Treonina Quinasas , S-Adenosilmetionina , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Acetilcoenzima A , Etanol , Glucosa , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Anal Bioanal Chem ; 414(22): 6485-6495, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35840670

RESUMEN

Cbf-14 (RLLRKFFRKLKKSV), a designed antimicrobial peptide derived from the cathelicidin family, is effective against drug-resistant bacteria. Structurally related peptide impurities in peptide medicines probably have side effects or even toxicity, thus impurity profiling research during the entire production process is indispensable. In this study, a simple liquid chromatography-high-resolution mass spectrometry (LC-HRMS) method using a quadrupole time-of-flight (Q-TOF) mass spectrometer was developed for separation, identification, and characterization of structurally related peptide impurities in Cbf-14. A total of one process-related impurity and thirty-two degradation products were identified, and seven of them have been synthesized and confirmed. These impurities have not been declared in custom synthetic peptides. The degradation products were divided into five categories: fifteen Cbf-14 hydrolysates, five Cbf-14 isomers, four acetyl-Cbf-14 isomers, two aldimine derivatives, and six oxidized impurities. Combined with the peptide synthesis and the stress-testing studies, the origins and the formation mechanisms of these impurities were elucidated, which provides a unique insight for the follow-up quality study of Cbf-14 and other peptide products.


Asunto(s)
Péptidos Antimicrobianos , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión/métodos , Contaminación de Medicamentos , Péptidos , Espectrometría de Masas en Tándem/métodos
16.
J Zhejiang Univ Sci B ; 23(2): 89-101, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35187884

RESUMEN

Cancer is the leading cause of death worldwide. Drugs play a pivotal role in cancer treatment, but the complex biological processes of cancer cells seriously limit the efficacy of various anticancer drugs. Autophagy, a self-degradative system that maintains cellular homeostasis, universally operates under normal and stress conditions in cancer cells. The roles of autophagy in cancer treatment are still controversial because both stimulation and inhibition of autophagy have been reported to enhance the effects of anticancer drugs. Thus, the important question arises as to whether we should try to strengthen or suppress autophagy during cancer therapy. Currently, autophagy can be divided into four main forms according to its different functions during cancer treatment: cytoprotective (cell survival), cytotoxic (cell death), cytostatic (growth arrest), and nonprotective (no contribution to cell death or survival). In addition, various cell death modes, such as apoptosis, necrosis, ferroptosis, senescence, and mitotic catastrophe, all contribute to the anticancer effects of drugs. The interaction between autophagy and these cell death modes is complex and can lead to anticancer drugs having different or even completely opposite effects on treatment. Therefore, it is important to understand the underlying contexts in which autophagy inhibition or activation will be beneficial or detrimental. That is, appropriate therapeutic strategies should be adopted in light of the different functions of autophagy. This review provides an overview of recent insights into the evolving relationship between autophagy and cancer treatment.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Autofagia/fisiología , Humanos , Necrosis/tratamiento farmacológico , Neoplasias/terapia
17.
Biochim Biophys Acta Mol Cell Res ; 1869(2): 119174, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34808206

RESUMEN

Mitotic catastrophe (MC) is a newly identified type of anticancer mechanism for multidrug resistance (MDR) prevention. However, the long cellular death process resulting from MC is not beneficial for anticancer treatment. BZML is a novel colchicine-binding site inhibitor which can overcome MDR by inducing MC; however, BZML-induced MC cells underwent a long cellular death process. Thus, to improve anticancer therapies based on drug-induced MC, BZML-induced MC was served as a model to further study the underlying molecular mechanisms in the process of MC. Here, BZML could induce p53-dependent senescence in A549/Taxol cells, a MDR cell line. This senescence was a secondary effect of MC in overcoming MDR. During MC, BZML-induced destruction of protein-degradation system contributed not only to an increase of p53 protein but also to the accumulation of survivin in nucleus of A549/Taxol cells. Importantly, the nuclear accumulation of survivin was not the inducer but the result of BZML-induced MC, and it promoted the survival of senescent cells. Moreover, it provided additional vulnerability and critical opportunities for sequentially applied therapies. Further, targeting survivin with YM155 accelerated the death of MC cells by timely eliminating therapy-induced senescent cells and strengthening the efficiency of BZML in overcoming MDR in A549/Taxol cells. Collectively, nuclear accumulation of survivin delayed cellular death during MC by promoting the survival of BZML-induced senescent A549/Taxol cells. Moreover, "one-two punch" approach to cancer treatment based on combination therapy with YM155 for survivin suppression might be a new strategy for potentiating MC to overcome MDR.


Asunto(s)
Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Imidazoles/efectos adversos , Neoplasias Pulmonares/tratamiento farmacológico , Mitosis , Paclitaxel/farmacología , Survivin/antagonistas & inhibidores , Apoptosis , Proliferación Celular , Senescencia Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
18.
J Microbiol ; 60(1): 89-99, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34964945

RESUMEN

The poor stability of peptides against trypsin largely limits their development as potential antibacterial agents. Here, to obtain a peptide with increased trypsin stability and potent antibacterial activity, TICbf-14 derived from the cationic peptide Cbf-14 was designed by the addition of disulfide-bridged hendecapeptide (CWTKSIPPKPC) loop. Subsequently, the trypsin stability and antimicrobial and antibiofilm activities of this peptide were evaluated. The possible mechanisms underlying its mode of action were also clarified. The results showed that TICbf-14 exhibited elevated trypsin inhibitory activity and effectively mitigated lung histopathological damage in bacteria-infected mice by reducing the bacterial counts, further inhibiting the systemic dissemination of bacteria and host inflammation. Additionally, TICbf-14 significantly repressed bacterial swimming motility and notably inhibited biofilm formation. Considering the mode of action, we observed that TICbf-14 exhibited a potent membrane-disruptive mechanism, which was attributable to its destructive effect on ionic bridges between divalent cations and LPS of the bacterial membrane. Overall, TICbf-14, a bifunctional peptide with both antimicrobial and trypsin inhibitory activity, is highly likely to become an ideal candidate for drug development against bacteria.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/enzimología , Proteínas Bacterianas/antagonistas & inhibidores , Biopelículas/efectos de los fármacos , Inhibidores de Tripsina/farmacología , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/química , Proteínas Bacterianas/metabolismo , Diseño de Fármacos , Pruebas de Sensibilidad Microbiana , Tripsina/química , Tripsina/metabolismo , Inhibidores de Tripsina/química
19.
Microbiol Res ; 255: 126909, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34839171

RESUMEN

Development of novel therapeutic strategies and antibacterial agents against antibiotic-resistant Staphylococcus aureus (S. aureus) is urgent. In this study, antibacterial activities and possible mechanisms of peptide MSI-1 against multiple drug-resistant S. aureus were investigated. Results demonstrated that MSI-1 had potent bacteriostatic activity and bactericidal efficiency against S. aureus, including methicillin-resistant S. aureus (MRSA), vancomycin-intermediate S. aureus (VISA) and vancomycin-resistant S. aureus (VRSA), with minimum inhibitory concentrations (MICs) ranging from 4 to 16 µg/mL and bactericidal times from 2-12 h. MSI-1 exhibited a low incidence of developing resistance and additive effects with vancomycin to overcome MRSA and VRSA. Moreover, MSI-1, even at sub-MIC concentrations, inhibited staphyloxanthin (STX) production of S. aureus. This inhibitory effect was unique and effectively sensitized S. aureus to host immune defense. In terms of its modes of action, MSI-1 disrupted the cell membrane of S. aureus by binding to negatively-charged lipoteichoic acid to exert a direct bactericidal effect. Interestingly, MSI-1 interacted with 4,4'-diapophytoene desaturase (CrtN) of S. aureus via ionic bonds, hydrogen bonds, and Pi-Pi or Pi-alkyl interactions, and alanine substitution of the key amino acids contributed to these interactions weakened this STX production inhibition. Thus, in a MRSA-induced skin infection in mice and MRSA/VRSA-induced systemic infection in Galleria mellonella,MSI-1 alleviated staphylococcal scalded skin syndrome to promote mouse skin wound repair and mitigated staphylococcus infection-induced immune melanization to enhance G. mellonella survival. Collectively, MSI-1 has potent antibacterial activity against drug-resistant S. aureus by affecting bacterial viability and exerting its anti-virulence effects. It can be developed as a new antibacterial agent to resist refractory S. aureus infection.

20.
Comput Struct Biotechnol J ; 19: 5494-5503, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712395

RESUMEN

Cluster of differentiation 47 (CD47)/signal regulatory protein alpha (SIRPα) is a negative innate immune checkpoint signaling pathway that restrains immunosurveillance and immune clearance, and thus has aroused wide interest in cancer immunotherapy. Blockade of the CD47/SIRPα signaling pathway shows remarkable antitumor effects in clinical trials. Currently, all inhibitors targeting CD47/SIRPα in clinical trials are biomacromolecules. The poor permeability and undesirable oral bioavailability of biomacromolecules have caused researchers to develop small-molecule CD47/SIRPα pathway inhibitors. This review will summarize the recent advances in CD47/SIRPα interactions, including crystal structures, peptides and small molecule inhibitors. In particular, we have employed computer-aided drug discovery (CADD) approaches to analyze all the published crystal structures and docking results of small molecule inhibitors of CD47/SIRPα, providing insight into the key interaction information to facilitate future development of small molecule CD47/SIRPα inhibitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA