Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 195(12): 1512, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37989793

RESUMEN

Phenol, known for its bioaccumulative nature and severe toxicity to riverine organisms, poses complex challenges for ecological risk assessment. To tackle this issue, we developed a three-stage incremental assessment method, providing an integrated perspective on phenol toxicity risk for aquatic organisms. The findings indicated that phenol concentrations were generally higher in the aquatic environments of northern rivers, such as the Hun River, Taizi River, and Liao River, compared to those in southern China. The evaluation results at individual points showed that the ecological risk of phenol to aquatic organisms ranked from high to low during rainy, dry, and normal seasons, showing seasonal variation characteristics. Regarding spatial variation along the river, the ecological risk of phenol gradually increased from upper reaches, peaked in the middle reaches, and then decreased in the lower reaches. Considering the different species types, fish face a higher risk of toxic effects of phenol than invertebrates when exposed to phenol over a long period of time, probably due to the bioaccumulative nature of phenol. To address ecological risk control at the watershed scale, there is an urgent need to revise China's current river water quality standards. It is essential to increase the emphasis on ecological risk control for aquatic organisms. Developing more targeted and refined ecological risk control strategies for river phenols is crucial to maintain a healthier and more vibrant river ecosystem.


Asunto(s)
Ecosistema , Fenol , Contaminantes Químicos del Agua , Animales , Organismos Acuáticos , Biota , China , Monitoreo del Ambiente/métodos , Fenol/efectos adversos , Medición de Riesgo/métodos , Ríos , Contaminantes Químicos del Agua/efectos adversos
2.
Sci Total Environ ; 899: 165718, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37487900

RESUMEN

Climate change has increased the frequency and length of droughts, but many uncertainties remain regarding the impacts of this aridification on terrestrial ecosystem function. Vegetation water use efficiency and carbon sequestration capacity are crucial determinants that both respond to and mediate the effects of drought. However, it is important to note that the consequences of drought on these processes can persist for years. A deeper exploration of these "drought legacy effects" will help improve our understanding of how climate change alter ecosystem carbon-water cycling. Here, we investigate the spatial patterns of drought legacy effects on remotely-sensed vegetation greenness (NDVI), net primary productivity (NPP) and water use efficiency (WUE) in southwestern China, a biodiversity hotspot that was impacted by an extreme drought in 2009-2010, with a particular focus on the tradeoff between WUE and NPP. Despite widespread negative drought legacy effects in NDVI (impacting 61.26 % of the study region), there was a general increase in NPP (58.68 %) and a decrease in WUE (67.53 %) in the year following drought (2011). This drought legacy effect was most evident in forests, while drought legacies in grasslands were less common. Drought legacies were also most apparent in relatively warm and humid areas. During the study period (2002 to 2018), we found that drought impacts on WUE also lagged behind changes in NPP by 1-2 years in forests, which highlights how drought legacies may manifest differently across ecosystem processes. Our study demonstrated that severe drought conditions may significantly affect the carbon sequestration capacity and water use efficiency of vegetation in southwestern China, and that forests may compensate for the detrimental effects of water stress by increasing water use and biomass growth after drought episodes.


Asunto(s)
Sequías , Ecosistema , Carbono , Bosques , China , Cambio Climático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA