Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-237339

RESUMEN

The emerging novel coronavirus SARS-CoV-2 has created a global confusing pandemic health crisis that warrants an accurate and detailed characterization of the rapidly evolving viral genome for understanding its epidemiology, pathogenesis and containment. We explored 61,485 sequences of the Nucleocapsid (N) protein, a potent diagnostic and prophylactic target, for identifying the mutations to review their roles in RT-PCR based diagnosis and observe consequent impacts. Compared to the Wuhan reference strain, a total of 1034 unique nucleotide mutations were identified in the mutant strains (49.15%, n=30,221) globally. Of these mutations, 367 occupy primer binding sites including 3-end mismatch to primer-pair of 11 well characterized primer sets. Noteworthy, CDC (USA) recommended N2 primer set contained lower mismatch than the other primer sets. Moreover, 684 amino acid (aa) substitutions located across 317 (75.66% of total aa) unique positions including 82, 21, and 83 of those in RNA binding N-terminal domain (NTD), SR-rich region, and C-terminal dimerization domain (CTD), respectively. Moreover, 11 in-frame deletions were revealed, mostly (n =10) within the highly flexible linker region, and the rest within the NTD region. Furthermore, we predicted the possible consequences of high-frequency mutations ([≥] 20) and deletions on the tertiary structure of the N protein. Remarkably, we observed that high frequency (67.94% of mutated sequences) coevolving mutations (R203K and G204R) destabilized and decreased overall structural flexibility. Despite being proposed as the alternate target to spike protein for vaccine and therapeutics, ongoing nonsynonymous evolution of the N protein may challenge the endeavors, thus need further immunoinformatics analyses. Therefore, continuous monitoring is required for tracing the ongoing evolution of the SARS-CoV-2 N protein in prophylactic and diagnostic interventions.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-015164

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing pandemic of coronavirus disease 2019 (COVID-19), a public health emergency of international concern declared by the World Health Organization (WHO). An immuno-informatics approach along with comparative genomic was applied to design a multi-epitope-based peptide vaccine against SARS-CoV-2 combining the antigenic epitopes of the S, M and E proteins. The tertiary structure was predicted, refined and validated using advanced bioinformatics tools. The candidate vaccine showed an average of [≥] 90.0% world population coverage for different ethnic groups. Molecular docking of the chimeric vaccine peptide with the immune receptors (TLR3 and TLR4) predicted efficient binding. Immune simulation predicted significant primary immune response with increased IgM and secondary immune response with high levels of both IgG1 and IgG2. It also increased the proliferation of T-helper cells and cytotoxic T-cells along with the increased INF-{gamma} and IL-2 cytokines. The codon optimization and mRNA secondary structure prediction revealed the chimera is suitable for high-level expression and cloning. Overall, the constructed recombinant chimeric vaccine candidate demonstrated significant potential and can be considered for clinical validation to fight against this global threat, COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA