Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38082584

RESUMEN

Conventional ultrasound (US) imaging employs the delay and sum (DAS) receive beamforming with dynamic receive focus for image reconstruction due to its simplicity and robustness. However, the DAS beamforming follows a geometrical method of delay estimation with a spatially constant speed-of-sound (SoS) of 1540 m/s throughout the medium irrespective of the tissue in-homogeneity. This approximation leads to errors in delay estimations that accumulate with depth and degrades the resolution, contrast and overall accuracy of the US image. In this work, we propose a fast marching based DAS for focused transmissions which leverages the approximate SoS map to estimate the refraction corrected propagation delays for each pixel in the medium. The proposed approach is validated qualitatively and quantitatively for imaging depths of upto ∼ 11 cm through simulations, where fat layer-induced aberration is employed to alter the SoS in the medium. To the best of the authors' knowledge, this is the first work considering the effect of SoS on image quality for deeper imaging.Clinical relevance- The proposed approach when employed with an approximate SoS estimation technique can aid in overcoming the fat-induced signal aberrations and thereby in the accurate imaging of various pathologies of liver and abdomen.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen , Ultrasonografía/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Sonido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA