Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 57(75): 9570-9573, 2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34546241

RESUMEN

We demonstrate here that selective vibrational excitation of a moiety, remotely attached in relation to the molecular reaction site, might offer a generalized strategy for inducing bond-breaking/bond-forming reactions with exquisite precision. As a proof-of-principle, the electrocyclic ring-expansion of a benzazirine to a ketenimine was induced, in a cryogenic matrix, by near-IR light tuned at the overtone stretching frequency of its OH remote antenna. This accomplishment paves the way for harnessing IR vibrational excitation as a tool to guide a variety of molecular structure manipulations in an exceptional highly-selective manner.

2.
Phys Chem Chem Phys ; 23(10): 5797-5803, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33683266

RESUMEN

In 1975, Buchwalter and Closs reported one of the first examples of heavy-atom quantum mechanical tunneling (QMT) by studying the ring closure of triplet cyclopentane-1,3-diyl to singlet bicyclo[2.1.0]pentane in cryogenic glasses. Since then, no clear theoretical evidence has been provided to elucidate how the intersystem crossing (ISC) and QMT are related in the reaction mechanism. In this work, we unequivocally show that at cryogenic temperatures, the ISC occurs solely in the quantum tunneling regime, with weak coupling non-adiabatic transition state theory rate constants predicting a spontaneous reaction in fair agreement with experimental observations. Despite its limitations, such an approach can be used to help unlock a comprehensive understanding of a variety of spin-forbidden chemical reactions in the low temperature regime.

3.
Phys Chem Chem Phys ; 21(45): 24935-24949, 2019 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-31701978

RESUMEN

An imino group was used for the first time as a vibrational antenna to manipulate molecular conformations. Imino-thiol isomers of thioacetamide were generated upon UV-irradiation of its amino-thione tautomer isolated in argon matrices at 11 K. Selective and reversible conformational isomerizations were induced by narrowband near-IR irradiation tuned at the frequencies of the 2ν(NH) first stretching overtone of each imino-thiol isomer. The conformational isomerization concerns the change in the orientation of a remote -SH group, while the orientation of the imino (C[double bond, length as m-dash]NH) group remains the same. Supported by quantum chemical anharmonic computations, this allowed for a reliable, isomer-selective vibrational assignment of the four imino-thiol isomers extending now over the full mid-IR and near-IR ranges. It was found that the experimental IR intensities of the 2ν(NH) first stretching overtones (computed 4-5 km mol-1) of the imino-thiol forms are comparable to those of the ν(NH) stretching fundamentals (computed 2-4 km mol-1). This is the first time such a phenomenon is reported for an imine molecule. The kinetics of conformational isomerization was monitored in situ, indicating that the irradiation-induced processes are significantly faster than the tunneling-driven spontaneous cis-trans rotamerization of the -SH group. Quantum yields for the rotamerizations of the -SH group resulting from the vibrational excitation of a remote -NH group were estimated and found to be comparable to those observed for matrix-isolated carboxylic acids and amino acids, where conformational changes of the -OH group were induced by the direct vibrational excitation of 2ν(OH) first stretching overtones.

4.
Chem Commun (Camb) ; 54(38): 4778-4781, 2018 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-29652052

RESUMEN

We apply interchangeable vibrational antennas (OH or NH2 group) to achieve unprecedented conformational control over the heavy aldehyde fragment in 2-formyl-2H-azirine. The two aldehyde conformers were manipulated bi-directionally, using selective vibrational excitation with narrowband near-infrared (NIR) light tuned at the wavenumbers corresponding to OH and NH2 stretching overtones and combination modes.

5.
J Phys Chem A ; 119(11): 2614-27, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25332047

RESUMEN

Monomers of pyruvic acid (PA) isolated in cryogenic argon and nitrogen matrixes were characterized by mid- and near-infrared spectroscopy. Interpretation of the experiments was aided by fully anharmonic calculations of the fundamental modes, overtones, and combinations up to two quanta, including their infrared intensities. The initially dominating PA conformer (Tc) has a cis CCOH arrangement and is stabilized by a strong intramolecular H-bond. Selective near-infrared excitation of Tc at the first OH overtone (6630 cm(-1) in Ar, 6643 cm(-1) in N2) induced a large scale conformational conversion to the higher-energy conformer (Tt) with trans CCOH arrangement. Tt was then converted back to Tc by selective NIR irradiation at the first Tt OH overtone (6940 cm(-1) in Ar, 6894 cm(-1) in N2). In N2 matrix, the Tt form was stabilized due to interaction between the OH group and the matrix molecules. This stabilization manifested itself in the absence of Tt → Tc relaxation and in a considerable change of the vibrational Tt signature upon going from argon to nitrogen matrix. In argon, the Tt form spontaneously decayed back to Tc in the dark (characteristic lifetime +16 h). In the presence of broad-band near-infrared light, the Tt → Tc relaxation speed considerably increased. The decay mechanisms are discussed.


Asunto(s)
Argón/química , Nitrógeno/química , Ácido Pirúvico/química , Ácido Pirúvico/aislamiento & purificación , Teoría Cuántica , Conformación Molecular , Estructura Molecular , Espectrofotometría Infrarroja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA