Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Entropy (Basel) ; 26(8)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39202089

RESUMEN

In this paper, we are concerned with the process of experimental information gain. Building on previous work, we show that this is a discontinuous process in which the initiating quantum-mechanical matter-instrument interactions are being turned into macroscopically observable events (EOs). In the course of time, such EOs evolve into spatio-temporal patterns of EOs, which allow conceivable alternatives of physical explanation to be distinguished. Focusing on the specific case of photon detection, we show that during their lifetimes, EOs proceed through the four phases of initiation, detection, erasure and reset. Once generated, the observational value of EOs can be measured in units of the Planck quantum of physical action h=4.136×10-15eVs. Once terminated, each unit of entropy of size kB=8.617×10-5eV/K, which had been created in the instrument during the observational phase, needs to be removed from the instrument to ready it for a new round of photon detection. This withdrawal of entropy takes place at an energetic cost of at least two units of the Landauer minimum energy bound of ELa=ln⁡2kBTD for each unit of entropy of size kB.

2.
Entropy (Basel) ; 26(3)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38539766

RESUMEN

It is argued that all physical knowledge ultimately stems from observation and that the simplest possible observation is that an event has happened at a certain space-time location X→=x→,t. Considering historic experiments, which have been groundbreaking in the evolution of our modern ideas of matter on the atomic, nuclear, and elementary particle scales, it is shown that such experiments produce as outputs streams of macroscopically observable events which accumulate in the course of time into spatio-temporal patterns of events whose forms allow decisions to be taken concerning conceivable alternatives of explanation. Working towards elucidating the physical and informational characteristics of those elementary observations, we show that these represent hugely amplified images of the initiating micro-events and that the resulting macro-images have a cognitive value of 1 bit and a physical value of Wobs=Eobsτobs≫h. In this latter equation, Eobs stands for the energy spent in turning the initiating micro-events into macroscopically observable events, τobs for the lifetimes during which the generated events remain macroscopically observable, and h for Planck's constant. The relative value Gobs=Wobs/h finally represents a measure of amplification that was gained in the observation process.

3.
Entropy (Basel) ; 22(4)2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33286166

RESUMEN

Making use of the equivalence between information and entropy, we have shown in a recent paper that particles moving with a kinetic energy ε carry potential information i p o t ( ε , T ) = 1 ln ( 2 ) ε k B   T relative to a heat reservoir of temperature T . In this paper we build on this result and consider in more detail the process of information gain in photon detection. Considering photons of energy E p h and a photo-ionization detector operated at a temperature T D , we evaluate the signal-to-noise ratio S N ( E p h , T D ) for different detector designs and detector operation conditions and show that the information gain realized upon detection, i r e a l ( E p h , T D ) , always remains smaller than the potential information i p o t ( E p h , T D ) carried with the photons themselves, i.e.,: i r e a l ( E p h , T D ) = 1 ln ( 2 ) ln ( S N ( E p h , T D ) ) ≤ i p o t ( E p h , T D ) = 1 ln ( 2 ) E p h k B T D   . This result is shown to be generally valid for all kinds of technical photon detectors, which shows that i p o t ( E p h , T D ) can indeed be regarded as an intrinsic information content that is carried with the photons themselves. Overall, our results suggest that photon detectors perform as thermodynamic engines that incompletely convert potential information into realized information with an efficiency that is limited by the second law of thermodynamics and the Landauer energy bounds on information gain and information erasure.

4.
Entropy (Basel) ; 22(7)2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-33286508

RESUMEN

A thermodynamic approach to mechanical motion is presented, and it is shown that dissipation of energy is the key process through which mechanical motion becomes observable. By studying charged particles moving in conservative central force fields, it is shown that the process of radiation emission can be treated as a frictional process that withdraws mechanical energy from the moving particles and that dissipates the radiation energy in the environment. When the dissipation occurs inside natural (eye) or technical photon detectors, detection events are produced which form observational images of the underlying mechanical motion. As the individual events, in which radiation is emitted and detected, represent pieces of physical action that add onto the physical action associated with the mechanical motion itself, observation appears as a physical overhead that is burdened onto the mechanical motion. We show that such overheads are minimized by particles following Hamilton's equations of motion. In this way, trajectories with minimum curvature are selected and dissipative processes connected with their observation are minimized. The minimum action principles which lie at the heart of Hamilton's equations of motion thereby appear as principles of minimum energy dissipation and/or minimum information gain. Whereas these principles dominate the motion of single macroscopic particles, these principles become challenged in microscopic and intensely interacting multi-particle systems such as molecules moving inside macroscopic volumes of gas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA