Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomater Adv ; 146: 213284, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36682202

RESUMEN

Major challenges in developing implanted neural stimulation devices are the invasiveness, complexity, and cost of the implantation procedure. Here, we report an injectable, nanofibrous 2D flexible hydrogel sheet-based neural stimulation device that can be non-invasively implanted via syringe injection for optoelectrical and biochemical dual stimulation of neuron. Specifically, methacrylated gelatin (GelMA)/alginate hydrogel nanofibers were mechanically reinforced with a poly(lactide-co-ε-caprolactone) (PLCL) core by coaxial electrospinning. The lubricant hydrogel shell enabled not only injectability, but also facile incorporation of functional nanomaterials and bioactives. The nanofibers loaded with photocatatlytic g-C3N4/GO nanoparticles were capable of stimulating neural cells via blue light, with a significant 36.3 % enhancement in neurite extension. Meanwhile, the nerve growth factor (NGF) loaded nanofibers supported a sustained release of NGF with well-maintained function to biochemically stimulate neural differentiation. We have demonstrated the capability of an injectable, hydrogel nanofibrous, neural stimulation system to support neural stimulation both optoelectrically and biochemically, which represents crucial early steps in a larger effort to create a minimally invasive system for neural stimulation.


Asunto(s)
Nanofibras , Hidrogeles/farmacología , Factor de Crecimiento Nervioso/farmacología , Neuronas , Prótesis e Implantes
2.
Nano Lett ; 22(9): 3583-3590, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35442045

RESUMEN

Ever-growing various applications, especially for tissue regeneration, cause a pressing need for novel methods to functionalize melt electrowritten (MEW) microfibrous scaffolds with unique nanomaterials. Here, two novel strategies are proposed to modify MEW polycaprolactone (PCL) grids with ZnO nanoparticles (ZP) or ZnO nanoflakes (ZF) to enhance osteogenic differentiation. The calcium mineralization levels of MC3T3 osteoblasts cultured on PCL/ZP 0.1 scaffolds are ∼3.91-fold higher than those cultured on nonmodified PCL scaffolds, respectively. Due to the nanotopography mimicking bone anatomy, the PCL/ZF scaffolds (∼2.60 times higher in ALP activity compared to PCL/ZP 1 and ∼2.17 times higher in mineralization compared to PCL/ZP 0.1) achieved superior results. Moreover, the flexible feature inherited from PCL grids makes it possible for them to act as a reshapable osteogenic bioscaffold. This study provides new strategies for synthesizing nanomaterials on microscale surfaces, opening up a new route for functionalizing MEW scaffolds to fulfill the growing demand of tissue engineering.


Asunto(s)
Materiales Biocompatibles , Óxido de Zinc , Diferenciación Celular , Osteogénesis , Poliésteres , Ingeniería de Tejidos/métodos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA