Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biophotonics ; 13(1): e201960069, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31613045

RESUMEN

Organic dirt on touch surfaces can be biological contaminants (microbes) or nutrients for those but is often invisible by the human eye causing challenges for evaluating the need for cleaning. Using hyperspectral scanning algorithm, touch surface cleanliness monitoring by optical imaging was studied in a real-life hospital environment. As the highlight, a human eye invisible stain from a dirty chair armrest was revealed manually with algorithms including threshold levels for intensity and clustering analysis with two excitation lights (green and red) and one bandpass filter (wavelength λ = 500 nm). The same result was confirmed by automatic k-means clustering analysis from the entire dirty data of visible light (red, green and blue) and filters 420 to 720 nm with 20 nm increments. Overall, the collected touch surface samples (N = 156) indicated the need for cleaning in some locations by the high culturable bacteria and adenosine triphosphate counts despite the lack of visible dirt. Examples of such locations were toilet door lock knobs and busy registration desk armchairs. Thus, the studied optical imaging system utilizing the safe visible light area shows a promising method for touch surface cleanliness evaluation in real-life environments.


Asunto(s)
Adenosina Trifosfato , Hospitales , Bacterias , Humanos
2.
Can J Microbiol ; 59(6): 407-12, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23750955

RESUMEN

Electronic faucets (types E1 and E2) and manual (M) faucets were studied for microbial quality, i.e., biomass and pathogenic microbes of biofilms in the faucet aerator, the water, and the outer surface of faucet in a hospital in Finland. Heterotrophic plate count content reflecting culturable microbial biomass and adenosine triphosphate content representing viable microbial biomass were smaller in the biofilms of E1-type electronic faucets than E2-type electronic faucets or M faucets. The likely explanation is the mixing point of cold and hot water (E1 and M: in the faucet; E2: in a separate box 50 cm before the actual faucet part). The highest amounts of Legionella (serogroups 2-15 of Legionella pneumophila) in a water sample (5000 cfu/L) and in biofilm samples (May-June 2008 sampling: 240 cfu/mL; November 2008: 1100 cfu/mL) were found in one E1-type faucet, which was lacking a back pressure valve due to faulty installation. This study reveals that certain types of electronic faucets seem to promote hospital hygiene, as they were associated with less microbial growth in biofilms in the faucet aerator, than some other types of electronic faucets or manual faucets, likely owing to the mixing point of cold and hot water. However, the faucet type had no direct effect on the presence of Legionella spp. Also correct installation is crucial.


Asunto(s)
Bacterias/crecimiento & desarrollo , Biopelículas/crecimiento & desarrollo , Agua Potable/microbiología , Contaminación de Equipos , Legionella/crecimiento & desarrollo , Carga Bacteriana , Biomasa , Electrónica , Finlandia , Hospitales Universitarios , Legionella pneumophila/crecimiento & desarrollo , Ingeniería Sanitaria , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA