Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 22239, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097754

RESUMEN

Metal fume fever (MFF) is a work-related disease caused by the inhalation of metal particles, including zinc oxide. Chronic asthma may develop as a long-term consequence of exposure, particularly for welders and metal workers who are most at risk. In this study, we investigated the effects of ZnO fume inhalation on multiple inflammation-related cytokine- and cytokine receptor genes in mice from lung and lymph node samples, to explore the role of these in the pathogenesis of MFF. In our experiments, the animals were treated with a sub-toxic amount of ZnO fume for 4 h a day for 3 consecutive days. Sampling occurred 3 and 12 h post-treatment. We are the first to demonstrate that ZnO inhalation causes extremely increased levels of IL-17f gene expression at both sampling time points, in addition to increased gene expression rates of several other interleukins and cytokines, such as IL-4, IL-13, CXCL5, CSF-3, and IFN-γ. Our animal experiment provides new insights into the immunological processes of early metal fume fever development. IL-17f plays a crucial role in connecting immunological and oxidative stress events. The increased levels of IL-4 and IL-13 cytokines may explain the development of long-term allergic asthma after exposure to ZnO nanoparticles, which is well-known among welders, smelters, and metal workers.


Asunto(s)
Asma , Soldadura , Óxido de Zinc , Ratones , Animales , Óxido de Zinc/toxicidad , Interleucina-13 , Interleucina-4 , Citocinas/metabolismo , Asma/inducido químicamente , Inmunidad , Exposición por Inhalación/efectos adversos
2.
Food Chem Toxicol ; 175: 113722, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36907501

RESUMEN

Metal fume fever is a well-known occupational disease that arises from prolonged exposure to subtoxic levels of zinc oxide-containing fumes or dust. This review article aims to identify and examine the possible immunotoxicological effects of inhaled zinc oxide nanoparticles. The current most widely accepted pathomechanism for the development of the disease involves the formation of reactive oxygen species following the entry of zinc oxide particles into the alveolus resulting the release of pro-inflammatory cytokines by activation of the Nuclear Factor Kappa B transcriptional signal, thus evoking the symptoms. The role of metallothionein in inducing tolerance is believed to be a key factor in mitigating the development of metal fume fever. The other, poorly proven hypothetical route is that zinc-oxide particles bind to an undefined protein in the body as haptens to form an antigen and act as an allergen. After activation of the immune system, primary antibodies and immune complexes are developed and type 1. hypersensitivity reaction occurs, that can cause asthmatic dyspnoea, urticaria and angioedema. The development of tolerance is explained by the formation of secondary antibodies against primary antibodies. Oxidative stress and immunological processes cannot be completely separated from each other, as they can induce each other.


Asunto(s)
Contaminantes Ocupacionales del Aire , Bisinosis , Soldadura , Óxido de Zinc , Humanos , Óxido de Zinc/toxicidad , Pulmón , Exposición por Inhalación/efectos adversos
3.
Environ Sci Pollut Res Int ; 29(32): 49147-49160, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35212899

RESUMEN

The most important welding processes used are the gas metal arc (GMA) welding, the tungsten inert gas (TIG) welding, and the manual metal arc (MMA) welding processes. The goal of our investigation was to monitor the distribution of iron (Fe), manganese (Mn), calcium (Ca), and magnesium (Mg) in the lung, spleen, liver, and kidney of mice after inhalation exposure of different welding methods using different steel base materials. The treatment groups were the following: MMA-mild steel, MMA-molybdenum-manganese (MoMn) alloy, TIG-mild steel, and TIG-stainless steel. The samples were taken 24 and 96 h after the treatments. Most importantly, it was found that the Mn concentration in the lung' samples of the MMA-mild steel and the MMA-MoMn groups was increased extremely at both sampling times and in the spleen' samples also. In the TIG groups, the rise of the Mn concentration was only considerable in the lungs and spleens at 24 h, and emerged concentration was found in the liver in 96 h samples. Histopathology demonstrated emerged siderin content in the spleens of the treated animals and in siderin filled macrophages in the lungs mostly in all treated groups. Traces of high-level glycogen retention was found in the MMA groups at both sampling times. Similar glycogen retention in TIG-Ms and TIG stainless group's liver samples and emerged number of vacuoles, especially in the hepatocytes of the TIG-stainless steel 96 h group were also found. The mentioned results raise the consequence that there is a considerable difference in the kinetics of the Mn distribution between the MMA- and the TIG-fume-treated groups. Hence, the result suggests that manganese has a particle-size-dependent toxico-kinetics property. The anomaly of the glycogen metabolism indicates the systemic effect of the welding fumes. Also, the numerous vacuoles mentioned above show a possible liver-specific adverse effect of some components of the TIG-stainless steel welding fumes.


Asunto(s)
Contaminantes Ocupacionales del Aire , Soldadura , Contaminantes Ocupacionales del Aire/análisis , Aleaciones , Animales , Gases , Glucógeno , Manganeso/metabolismo , Metales , Ratones , Acero Inoxidable , Acero
4.
Materials (Basel) ; 8(11): 7926-7937, 2015 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-28793688

RESUMEN

Iron hollow sphere filled aluminum matrix syntactic foams (AMSFs) were produced by low pressure, inert gas assisted infiltration. The microstructure of the produced AMSFs was investigated by light and electron microscopy, extended by energy dispersive X-ray spectroscopy and electron back-scattered diffraction. The investigations revealed almost perfect infiltration and a slight gradient in the grain size of the matrix. A very thin interface layer that ensures good bonding between the hollow spheres and the matrix was also observed. Compression tests were performed on cylindrical specimens to explore the characteristic mechanical properties of the AMSFs. Compared to other (conventional) metallic foams, the investigated AMSFs proved to have outstanding mechanical properties (yield strength, plateau strength, etc.) and energy absorbing capability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA