Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 408: 124403, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33189462

RESUMEN

Oxidation-reduction potentials (ORP) govern the transformation of organic compounds in water and soils. Standard methods for measurements of ORPs in subsurface setting are deeply flawed due to heterogeneous samples from wells, failure to capture weakly poised redox couples, and biases with ex-situ measurements. In this study, we developed a real-time in-situ ORP sensor system that continuously measures biogeochemical electrical potentials using vertically distributed point sensing electrodes in direct contact with the soil. Three hundred thousand data points, providing a full range of aqueous ORP values (+ 600 to - 600 mV vs. Ag/AgCl) were collected over 513 days to spatially and temporally resolve subsurface biogeochemical processes at a former petroleum refinery. Water quality and microbial community data support the validity of the ORP data. In locations impacted by petroleum light non-aqueous phase liquids (LNAPLs), barometric pumping and ebullition events drive near-daily cycles of ORP changes in the vadose zone of 400 mV. When only dissolved phase hydrocarbons are present, near-daily redox cycles are absent and values for ORP indicate methanogenic conditions immediately about the water table. When hydrocarbons are not present, redox conditions are more oxidizing by + 400 to + 700 mV. The embedded electrodes revealed variations in hydrocarbon biodegradation in time and space that cannot be resolved by collection and analysis of conventional samples of groundwater and soil gas.


Asunto(s)
Agua Subterránea , Petróleo , Contaminantes Químicos del Agua , Biodegradación Ambiental , Hidrocarburos , Suelo , Contaminantes Químicos del Agua/análisis
2.
J Contam Hydrol ; 205: 57-69, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28888731

RESUMEN

The detection of non-aqueous phase liquid (NAPL) related impacts in freshwater environments by electrical resistivity imaging (ERI) has been clearly demonstrated in field conditions, but the mechanism generating the resistive signature is poorly understood. An electrical barrier mechanism which allows for detecting NAPLs with ERI is tested by developing a theoretical basis for the mechanism, testing the mechanism in a two-dimensional sand tank with ERI, and performing forward modeling of the laboratory experiment. The NAPL barrier theory assumes at low bulk soil NAPL concentrations, thin saturated NAPL barriers can block pore throats and generate a detectable electrically resistive signal. The sand tank experiment utilized a photographic technique to quantify petroleum saturation, and to help determine whether ERI can detect and quantify NAPL across the water table. This experiment demonstrates electrical imaging methods can detect small quantities of NAPL of sufficient thickness in formations. The bulk volume of NAPL is not the controlling variable for the amount of resistivity signal generated. The resistivity signal is primarily due to a zone of high resistivity separate phase liquid blocking current flow through the fully NAPL saturated pores spaces. For the conditions in this tank experiment, NAPL thicknesses of 3.3cm and higher in the formation was the threshold for detectable changes in resistivity of 3% and greater. The maximum change in resistivity due to the presence of NAPL was an increase of 37%. Forward resistivity models of the experiment confirm the barrier mechanism theory for the tank experiment.


Asunto(s)
Hidrología/métodos , Contaminantes del Suelo/análisis , Contaminantes Químicos del Agua/análisis , Electricidad , Hidrología/instrumentación , Dióxido de Silicio , Suelo
3.
Appl Microbiol Biotechnol ; 100(7): 3347-60, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26691516

RESUMEN

Advances in our understanding of the microbial ecology at sites impacted by light non-aqueous phase liquids (LNAPLs) are needed to drive development of optimized bioremediation technologies, support longevity models, and develop culture-independent molecular tools. In this study, depth-resolved characterization of geochemical parameters and microbial communities was conducted for a shallow hydrocarbon-impacted aquifer. Four distinct zones were identified based on microbial community structure and geochemical data: (i) an aerobic, low-contaminant mass zone at the top of the vadose zone; (ii) a moderate to high-contaminant mass, low-oxygen to anaerobic transition zone in the middle of the vadose zone; (iii) an anaerobic, high-contaminant mass zone spanning the bottom of the vadose zone and saturated zone; and (iv) an anaerobic, low-contaminant mass zone below the LNAPL body. Evidence suggested that hydrocarbon degradation is mediated by syntrophic fermenters and methanogens in zone III. Upward flux of methane likely contributes to promoting anaerobic conditions in zone II by limiting downward flux of oxygen as methane and oxygen fronts converge at the top of this zone. Observed sulfate gradients and microbial communities suggested that sulfate reduction and methanogenesis both contribute to hydrocarbon degradation in zone IV. Pyrosequencing revealed that Syntrophus- and Methanosaeta-related species dominate bacterial and archaeal communities, respectively, in the LNAPL body below the water table. Observed phylotypes were linked with in situ anaerobic hydrocarbon degradation in LNAPL-impacted soils.


Asunto(s)
Archaea/clasificación , Deltaproteobacteria/clasificación , Agua Subterránea/microbiología , Hidrocarburos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Archaea/genética , Archaea/metabolismo , Biodegradación Ambiental , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Metano/biosíntesis , Consorcios Microbianos/genética , Industria del Petróleo y Gas , Oxidación-Reducción , Oxígeno/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Sulfatos/metabolismo
4.
Ground Water ; 53(4): 658-67, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25040603

RESUMEN

Efflux of CO2 above releases of petroleum light nonaqueous phase liquids (LNAPLs) has emerged as a critical parameter for resolving natural losses of LNAPLs and managing LNAPL sites. Current approaches for resolving CO2 efflux include gradient, flux chamber, and mass balance methods. Herein a new method for measuring CO2 efflux above LNAPL bodies, referred to as CO2 traps, is introduced. CO2 traps involve an upper and a lower solid phase sorbent elements that convert CO2 gas into solid phase carbonates. The sorbent is placed in an open vertical section of 10 cm ID polyvinyl chloride (PVC) pipe located at grade. The lower sorbent element captures CO2 released from the subsurface via diffusion and advection. The upper sorbent element prevents atmospheric CO2 from reaching the lower sorbent element. CO2 traps provide integral measurement of CO2 efflux based over the period of deployment, typically 2 to 4 weeks. Favorable attributes of CO2 traps include simplicity, generation of integral (time averaged) measurement, and a simple means of capturing CO2 for carbon isotope analysis. Results from open and closed laboratory experiments indicate that CO2 traps quantitatively capture CO2 . Results from the deployment of 23 CO2 traps at a former refinery indicate natural loss rates of LNAPL (measured in the fall, likely concurrent with high soil temperatures and consequently high degradation rates) ranging from 13,400 to 130,000 liters per hectare per year (L/Ha/year). A set of field triplicates indicates a coefficient of variation of 18% (resulting from local spatial variations and issues with measurement accuracy).


Asunto(s)
Contaminantes Atmosféricos/análisis , Dióxido de Carbono/análisis , Monitoreo del Ambiente/instrumentación , Petróleo , Contaminantes del Suelo/análisis
5.
Ground Water ; 50(6): 861-71, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22617047

RESUMEN

This article explores the hypothesis that natural losses of light nonaqueous phase liquids (LNAPLs) through dissolution and evaporation can control the overall extent of LNAPL bodies and LNAPL fluxes observed within LNAPL bodies. First, a proof-of-concept sand tank experiment is presented. An LNAPL (methyl tert-butyl ether) was injected into a sand tank at five constant injection rates that were increased stepwise. Initially, for each injection rate the LNAPL bodies expanded quickly. With time the rate of expansion of the LNAPL bodies slowed and at extended times the extent of the LNAPL became constant. Attainment of a stable LNAPL extent is attributed to rates of LNAPL addition being equal to rates of LNAPL losses through dissolution and evaporation. Secondly, analytical solutions are developed to extrapolate the processes observed in the proof-of-concept experiment to dimensions and time frames that are consistent with field-scale LNAPL bodies. Three LNAPL body geometries that are representative of common field conditions are considered including one-dimensional, circular, and oblong shapes. Using idealized conditions, the solutions describe volumetric LNAPL fluxes as a function of position in LNAPL bodies and the overall extent of LNAPL bodies as a function of time. Results from both the proof-of-concept experiment and the mathematical developments illustrate that natural losses of LNAPL can play an important role in governing LNAPL fluxes within LNAPL bodies and the overall extent of LNAPL bodies.


Asunto(s)
Monitoreo del Ambiente/métodos , Sedimentos Geológicos/análisis , Agua Subterránea/análisis , Éteres Metílicos/análisis , Contaminación por Petróleo/análisis , Contaminantes Químicos del Agua/análisis , Éteres Metílicos/química , Modelos Estadísticos , Dióxido de Silicio/química , Contaminantes Químicos del Agua/química
6.
Ground Water ; 50(6): 840-50, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22489832

RESUMEN

The stability of subsurface Light Nonaqueous Phase Liquids (LNAPLs) is a key factor driving expectations for remedial measures at LNAPL sites. The conventional approach to resolving LNAPL stability has been to apply Darcy's Equation. This paper explores an alternative approach wherein single-well tracer dilution tests with intermittent mixing are used to resolve LNAPL stability. As a first step, an implicit solution for single-well intermittent mixing tracer dilution tests is derived. This includes key assumptions and limits on the allowable time between intermittent mixing events. Second, single-well tracer dilution tests with intermittent mixing are conducted under conditions of known LNAPL flux. This includes a laboratory sand tank study and two field tests at active LNAPL recovery wells. Results from the sand tank studies indicate that LNAPL fluxes in wells can be transformed into formation fluxes using corrections for (1) LNAPL thicknesses in the well and formation and (2) convergence of flow to the well. Using the apparent convergence factor from the sand tank experiment, the average error between the known and measured LNAPL fluxes is 4%. Results from the field studies show nearly identical known and measured LNAPL fluxes at one well. At the second well the measured fluxes appear to exceed the known value by a factor of two. Agreement between the known and measured LNAPL fluxes, within a factor of two, indicates that single-well tracer dilution tests with intermittent mixing can be a viable means of resolving LNAPL stability.


Asunto(s)
Monitoreo del Ambiente/métodos , Colorantes Fluorescentes/química , Contaminación por Petróleo/análisis , Contaminantes Químicos del Agua/análisis , Pozos de Agua/análisis , Modelos Estadísticos , Movimientos del Agua
7.
Ground Water ; 50(6): 851-60, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23289131

RESUMEN

Petroleum liquids, referred to as light non-aqueous phase liquids (LNAPLs), are commonly found beneath petroleum facilities. Concerns with LNAPLs include migration into clean soils, migration beyond property boundaries, and discharges to surface water. Single-well tracer dilution techniques were used to measure LNAPL fluxes through 50 wells at 7 field sites. A hydrophobic tracer was mixed into LNAPL in a well. Intensities of fluorescence associated with the tracer were measured over time using a spectrometer and a fiber optic cable. LNAPL fluxes were estimated using observed changes in the tracer concentrations over time. Measured LNAPL fluxes range from 0.006 to 2.6 m/year with a mean and median of 0.15 and 0.064 m/year, respectively. Measured LNAPL fluxes are two to four orders of magnitude smaller than a common groundwater flux of 30 m/year. Relationships between LNAPL fluxes and possible governing parameters were evaluated. Observed LNAPL fluxes are largely independent of LNAPL thickness in wells. Natural losses of LNAPL through dissolution, evaporation, and subsequent biodegradation, were estimated using a simple mass balance, measured LNAPL fluxes in wells, and an assumed stable LNAPL extent. The mean and median of the calculated loss rates were found to be 24.0 and 5.0 m3/ha/year, respectively. Mean and median losses are similar to values reported by others. Coupling observed LNAPL fluxes to observed rates of natural LNAPL depletion suggests that natural losses of LNAPL may be an important parameter controlling the overall extent of LNAPL bodies.


Asunto(s)
Monitoreo del Ambiente/métodos , Colorantes Fluorescentes/química , Contaminación por Petróleo/análisis , Contaminantes Químicos del Agua/análisis , Pozos de Agua/análisis , Movimientos del Agua
8.
Ground Water ; 45(5): 569-78, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17760583

RESUMEN

This paper describes the use of single-well tracer dilution techniques to resolve the rate of light nonaqueous phase liquid (LNAPL) flow through wells and the adjacent geologic formation. Laboratory studies are presented in which a fluorescing tracer is added to LNAPL in wells. An in-well mixer keeps the tracer well mixed in the LNAPL. Tracer concentrations in LNAPL are measured through time using a fiber optic cable and a spectrometer. Results indicate that the rate of tracer depletion is proportional to the rate of LNAPL flow through the well and the adjacent formation. Tracer dilution methods are demonstrated for vertically averaged LNAPL Darcy velocities of 0.00048 to 0.11 m/d and LNAPL thicknesses of 9 to 24 cm. Over the range of conditions studied, results agree closely with steady-state LNAPL flow rates imposed by pumping. A key parameter for estimating LNAPL flow rates in the formation is the flow convergence factor alpha. Measured convergence factors for 0.030-inch wire wrap, 0.030-inch-slotted polyvinyl chloride (PVC), and 0.010-inch-slotted PVC are 1.7, 0.91, and 0.79, respectively. In addition, methods for using tracer dilution data to determine formation transmissivity to LNAPL are presented. Results suggest that single-well tracer dilution techniques are a viable approach for measuring in situ LNAPL flow and formation transmissivity to LNAPL.


Asunto(s)
Movimientos del Agua , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Colorantes Fluorescentes , Abastecimiento de Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA