Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neuroscience ; 275: 531-9, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-24976513

RESUMEN

Human obesity is associated with increased leptin levels and pain, but the specific brain regions and neurochemical mechanisms underlying this association remain poorly understood. This study used adult male C57BL/6J (B6, n=14) mice and leptin-deficient, obese B6.Cg-Lep(ob)/J (obese, n=10) mice to evaluate the hypothesis that nociception is altered by systemic leptin levels and by adenosine A1 receptors in the pontine reticular formation. Nociception was quantified as paw withdrawal latency (PWL) in s after onset of a thermal stimulus. PWL was converted to percent maximum possible effect (%MPE). After obtaining baseline PWL measures, the pontine reticular formation was microinjected with saline (control), three concentrations of the adenosine A1 receptor agonist N(6)-p-sulfophenyladenosine (SPA), or super-active mouse leptin receptor antagonist (SMLA) followed by SPA 15 min later, and PWL was again quantified. In obese, leptin-deficient mice, nociception was quantified before and during leptin replacement via subcutaneous osmotic pumps. SPA was administered into the pontine reticular formation of leptin-replaced mice and PWL testing was repeated. During baseline (before vehicle or SPA administration), PWL was significantly (p=0.0013) lower in leptin-replaced obese mice than in B6 mice. Microinjecting SPA into the pontine reticular formation of B6 mice caused a significant (p=0.0003) concentration-dependent increase in %MPE. SPA also significantly (p<0.05) increased %MPE in B6 mice and in leptin-replaced obese mice, but not in leptin-deficient obese mice. Microinjection of SMLA into the pontine reticular formation before SPA did not alter PWL. The results show for the first time that pontine reticular formation administration of the adenosine A1 receptor agonist SPA produced antinociception only in the presence of systemic leptin. The concentration-response data support the interpretation that adenosine A1 receptors localized to the pontine reticular formation significantly alter nociception.


Asunto(s)
Leptina/metabolismo , Dolor Nociceptivo/metabolismo , Tegmento Pontino/metabolismo , Receptor de Adenosina A1/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos
2.
J Chem Neuroanat ; 37(2): 112-7, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19118621

RESUMEN

This study tested the hypothesis that activation of guanine nucleotide binding (G) proteins in rat prefrontal cortex (PFC) is altered by hypoxia. G protein activation by the cholinergic agonist carbachol and the opioid agonist DAMGO was quantified using [(35)S]GTPgammaS autoradiography. G protein activation was expressed as nCi/g tissue in the PFC of 18 rats exposed for 14 consecutive days to sustained hypoxia (10% O(2)), intermittent hypoxia (10% and 21% O(2) alternating every 90 s), or room air (21% O(2)). Relative to basal levels of G protein activation, carbachol and DAMGO increased G protein activation by approximately 70% across all oxygen concentrations. Compared to the room air condition, sustained hypoxia caused a significant increase in G protein activation in frontal association (FrA) region of the PFC. Region-specific comparisons revealed that intermittent and sustained hypoxia caused greater DAMGO-stimulated G protein activation in the FrA than in the pre-limbic (PrL). The data show for the first time that hypoxia increased G protein activation in PFC. The results suggest the potential for hypoxia-induced enhancements in G protein activation to alter PFC function.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Hipoxia Encefálica/metabolismo , Consumo de Oxígeno/fisiología , Oxígeno/metabolismo , Corteza Prefrontal/metabolismo , Acetilcolina/metabolismo , Analgésicos Opioides/farmacología , Animales , Carbacol/farmacología , Agonistas Colinérgicos/farmacología , Modelos Animales de Enfermedad , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Hipoxia Encefálica/fisiopatología , Masculino , Corteza Prefrontal/anatomía & histología , Corteza Prefrontal/fisiopatología , Ratas , Ratas Sprague-Dawley , Síndromes de la Apnea del Sueño/metabolismo , Síndromes de la Apnea del Sueño/fisiopatología , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
3.
Hippocampus ; 17(10): 934-42, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17598161

RESUMEN

Intermittent hypoxia, such as that associated with obstructive sleep apnea, can cause neuronal death and neurobehavioral dysfunction. The cellular and molecular mechanisms through which hypoxia alter hippocampal function are incompletely understood. This study used in vitro [(35)S]guanylyl-5'-O-(gamma-thio)-triphosphate ([(35)S]GTP gamma S) autoradiography to test the hypothesis that carbachol and DAMGO activate hippocampal G proteins. In addition, this study tested the hypothesis that in vivo exposure to different oxygen (O(2)) concentrations causes a differential activation of G proteins in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus. G protein activation was quantified as nCi/g tissue in CA1, CA3, and DG from rats housed for 14 days under one of three different oxygen conditions: normoxic (21% O(2)) room air, or hypoxia (10% O(2)) that was intermittent or sustained. Across all regions of the hippocampus, activation of G proteins by the cholinergic agonist carbachol and the mu opioid agonist [D-Ala(2), N-Met-Phe(4), Gly(5)] enkephalin (DAMGO) was ordered by the degree of hypoxia such that sustained hypoxia > intermittent hypoxia > room air. Carbachol increased G protein activation during sustained hypoxia (38%), intermittent hypoxia (29%), and room air (27%). DAMGO also activated G proteins during sustained hypoxia (52%), intermittent hypoxia (48%), and room air (43%). Region-specific comparisons of G protein activation revealed that the DG showed significantly less activation by carbachol following intermittent hypoxia and sustained hypoxia than the CA1. Considered together, the results suggest the potential for hypoxia to alter hippocampal function by blunting the cholinergic activation of G proteins within the DG.


Asunto(s)
Carbacol/farmacología , Agonistas Colinérgicos/farmacología , Proteínas de Unión al GTP/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiopatología , Hipoxia/patología , Analgésicos Opioides/farmacología , Animales , Autorradiografía , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Guanosina 5'-O-(3-Tiotrifosfato)/farmacocinética , Hipocampo/efectos de los fármacos , Hipoxia/fisiopatología , Técnicas In Vitro , Masculino , Oxígeno/farmacología , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Ratas , Ratas Sprague-Dawley
4.
Neuroscience ; 144(1): 375-86, 2007 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-17055662

RESUMEN

Morphine, a mu-opioid receptor agonist, is a commonly prescribed treatment for pain. Although highly efficacious, morphine has many unwanted side effects including disruption of sleep and obtundation of wakefulness. One mechanism by which morphine alters sleep and wakefulness may be by modulating GABAergic signaling in brain regions regulating arousal, including the pontine reticular nucleus, oral part (PnO). This study used in vivo microdialysis in unanesthetized Sprague-Dawley rat to test the hypothesis that mu-opioid receptors modulate PnO GABA levels. Validation of the high performance liquid chromatographic technique used to quantify GABA was obtained by dialyzing the PnO (n=4 rats) with the GABA reuptake inhibitor nipecotic acid (500 microM). Nipecotic acid caused a 185+/-20% increase in PnO GABA levels, confirming chromatographic detection of GABA and demonstrating the existence of functional GABA transporters in rat PnO. Morphine caused a concentration-dependent decrease in PnO GABA levels (n=25 rats). Coadministration of morphine (100 microM) with naloxone (1 microM), a mu-opioid receptor antagonist, blocked the morphine-induced decrease in PnO GABA levels (n=5 rats). These results show for the first time that mu-opioid receptors in rat PnO modulate GABA levels. A second group of rats (n=6) was used to test the hypothesis that systemically administered morphine also decreases PnO GABA levels. I.v. morphine caused a significant (P<0.05) decrease (19%) in PnO GABA levels relative to control i.v. infusions of saline. Finally, microinjections followed by 2 h recordings of electroencephalogram and electromyogram tested the hypothesis that PnO morphine administration disrupts sleep (n=8 rats). Morphine significantly (P<0.05) increased the percent of time spent in wakefulness (65%) and significantly (P<0.05) decreased the percent of rapid eye movement (REM) sleep (-53%) and non-REM sleep (-69%). The neurochemical and behavioral data suggest that morphine may disrupt sleep, at least in part, by decreasing GABAergic transmission in the PnO.


Asunto(s)
Morfina/farmacología , Narcóticos/farmacología , Puente/efectos de los fármacos , Puente/metabolismo , Formación Reticular/efectos de los fármacos , Formación Reticular/metabolismo , Sueño/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo , Animales , Electroencefalografía , Electromiografía , Inyecciones Intraventriculares , Masculino , Microdiálisis , Microinyecciones , Morfina/administración & dosificación , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Narcóticos/administración & dosificación , Ácidos Nipecóticos/administración & dosificación , Ácidos Nipecóticos/farmacología , Ratas , Ratas Sprague-Dawley , Receptores Opioides mu/efectos de los fármacos , Receptores Opioides mu/metabolismo , Vigilia/efectos de los fármacos
5.
Neuroscience ; 126(4): 821-30, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15207317

RESUMEN

Microinjecting the acetylcholinesterase inhibitor neostigmine into the pontine reticular formation of C57BL/6J (B6) mouse causes a rapid eye movement (REM) sleep-like state. This finding is consistent with similar studies in cat and both sets of data indicate that the REM sleep-like state is caused by increasing levels of endogenous acetylcholine (ACh). Muscarinic cholinergic receptors have been localized to the pontine reticular formation of B6 mouse but no previous studies have examined which of the five muscarinic receptor subtypes participate in cholinergic REM sleep enhancement. This study examined the hypothesis that M2 receptors in pontine reticular formation of B6 mouse contribute to the REM sleep-like state caused by pontine reticular formation administration of neostigmine. B6 mice (n=13) were implanted with electrodes for recording states of sleep and wakefulness and with microinjection cannulae aimed for the pontine reticular formation. States of sleep and wakefulness were recorded for 4 h following pontine reticular formation injection of saline (control) or neostigmine. Experiments designed to gain insight into the muscarinic receptor subtypes mediating REM sleep enhancement involved pontine reticular formation administration of neostigmine after pertussis toxin, neostigmine after methoctramine, and neostigmine after pirenzepine. Pertussis toxin was used to block effects mediated by M2 and M4 receptors. Methoctramine was used to block M2 and M4 receptors, and pirenzepine was used to block M1 and M4 receptors. Pertussis toxin and methoctramine significantly decreased the neostigmine-induced REM sleep-like state. In contrast, pretreatment with pirenzepine did not significantly decrease the REM sleep-like state caused by neostigmine. These results support the interpretation that M2 receptors in the pontine reticular formation of B6 mouse contribute to the generation of REM sleep.


Asunto(s)
Receptor Muscarínico M2/fisiología , Formación Reticular/fisiología , Sueño REM/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Inhibidores de la Colinesterasa/farmacología , Diaminas/farmacología , Interacciones Farmacológicas , Electrodos , Electroencefalografía/métodos , Electromiografía/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Microinyecciones , Antagonistas Muscarínicos/farmacología , Neostigmina/farmacología , Toxina del Pertussis/farmacología , Pirenzepina/farmacología , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/fisiología , Receptor Muscarínico M2/efectos de los fármacos , Formación Reticular/efectos de los fármacos , Sueño REM/efectos de los fármacos , Factores de Tiempo , Vigilia/efectos de los fármacos , Vigilia/fisiología
6.
Neuroscience ; 126(4): 831-8, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15207318

RESUMEN

Pontine acetylcholine (ACh) contributes to the regulation of electroencephalographic and behavioral arousal in all mammals so far investigated. The mouse is recognized as a powerful model for pharmacogenomics but the synaptic mechanisms regulating ACh release in mouse pontine reticular formation have not been characterized. Drug delivery by microdialysis was used in isoflurane-anesthetized C57BL/6J (B6) mice (n=33) to test the hypothesis that muscarinic autoreceptors modulate ACh release in the pontine reticular nucleus, oral part (PnO). Dialysis delivery of tetrodotoxin to the PnO significantly decreased ACh by 58% below control levels, confirming that measured ACh reflected neurotransmitter release. The muscarinic antagonist scopolamine increased ACh release in the PnO by 21% (3 nM), 48% (10 nM), 56% (30 nM), and 104% (100 nM). The muscarinic agonist bethanechol dialyzed into the PnO significantly decreased ACh release by 60% compared with control. Dialysis delivery of relatively subtype selective muscarinic antagonists to the PnO revealed the following order of potency for increasing ACh release: scopolamine (3 nM)>AF-DX 116 (100 nM)=pirenzepine (100 nM). These data support the conclusion that ACh release in PnO of B6 mouse is modulated by non-M1 muscarinic receptors.


Asunto(s)
Acetilcolina/metabolismo , Receptores Muscarínicos/fisiología , Formación Reticular/metabolismo , Análisis de Varianza , Animales , Betanecol/farmacología , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Ratones Endogámicos C57BL , Microdiálisis/métodos , Agonistas Muscarínicos/farmacología , Antagonistas Muscarínicos/farmacología , Receptores Muscarínicos/clasificación , Formación Reticular/efectos de los fármacos , Tetrodotoxina/farmacología
7.
Neuroscience ; 123(1): 17-29, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-14667438

RESUMEN

The prefrontal cortex and brainstem modulate autonomic and arousal state control but the neurotransmitter mechanisms underlying communication between prefrontal cortex and brainstem remain poorly understood. This study examined the hypothesis that microdialysis delivery of carbachol to the pontine reticular formation (PRF) of anesthetized C57BL/6J (B6) mouse modulates acetylcholine (ACh) release in the frontal association cortex. Microdialysis delivery of carbachol (8.8 mM) to the PRF caused a significant (P<0.01) decrease (-28%) in ACh release in the frontal association cortex, a significant (P<0.01) decrease (-23%) in respiratory rate, and a significant (P<0.01) increase (223%) in time to righting after anesthesia. Additional in vitro studies used the [(35)S]guanylyl-5'-O-(gamma-thio)-triphosphate ([(35)S]GTPgammaS) assay to test the hypothesis that muscarinic cholinergic receptors activate guanine nucleotide binding proteins (G proteins) in the frontal association cortex and basal forebrain. In vitro treatment with carbachol (1 mM) caused a significant (P<0.01) increase in [(35)S]GTPgammaS binding in the frontal association cortex (62%) and basal forebrain nuclei including medial septum (227%), vertical (210%) and horizontal (165%) limbs of the diagonal band of Broca, and substantia innominata (127%). G protein activation by carbachol was concentration-dependent and blocked by atropine, indicating that the carbachol-stimulated [(35)S]GTPgammaS binding was mediated by muscarinic cholinergic receptors. Together, the in vitro and in vivo data show for the first time in B6 mouse that cholinergic neurotransmission in the PRF can significantly alter ACh release in frontal association cortex, arousal from anesthesia, and respiratory rate.


Asunto(s)
Acetilcolina/metabolismo , Carbacol/farmacología , Puente/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Formación Reticular/efectos de los fármacos , Acetilcolina/antagonistas & inhibidores , Animales , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Puente/metabolismo , Corteza Prefrontal/metabolismo , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Formación Reticular/metabolismo
8.
J Pharmacol Exp Ther ; 299(3): 960-6, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11714883

RESUMEN

Muscarinic autoreceptors modulate cholinergic neurotransmission in animals ranging from insects to humans. No previous studies have characterized autoreceptor modulation of acetylcholine (ACh) release in prefrontal cortex of intact mouse. Data obtained from experiments in 45 mice considered ACh as a phenotype and tested the hypothesis that pharmacologically defined M2 receptors modulate ACh release in prefrontal cortex of C57BL/6J mouse. In vivo microdialysis quantified ACh release during delivery of Ringer's (control) or Ringer's containing muscarinic receptor antagonists. The lowest concentration of each antagonist [scopolamine, pirenzepine, or 11-2[(-[(diethylamino)methyl]-1-piperidinyl)-acetyl]-5,11-dihydro-6H-pyrido(2,3-b)(1,4)-benzodiazepine-one (AF-DX116)] that significantly increased ACh release was determined and defined as the minimum ACh-releasing concentration. Dialysis delivery of scopolamine caused a concentration-dependent increase in ACh release, consistent with the existence of muscarinic autoreceptors. The order of potency for causing increased ACh release was scopolamine = AF-DX116 > pirenzepine. Administration of pertussis toxin into prefrontal cortex blocked the AF-DX116-induced increase in ACh release. These findings support the conclusion that M2 receptors modulate ACh release in C57BL/6J mouse prefrontal cortex. Nearly every human gene has a mouse homolog and the appeal of mouse models is reinforced by the identification of mouse genes causing phenotypic deviants. The present data encourage comparative phenotyping of cortical ACh release in additional mouse strains.


Asunto(s)
Acetilcolina/metabolismo , Pirenzepina/análogos & derivados , Corteza Prefrontal/metabolismo , Receptores Muscarínicos/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Antagonistas Muscarínicos/farmacología , Pirenzepina/farmacología , Corteza Prefrontal/anatomía & histología , Corteza Prefrontal/efectos de los fármacos , Receptor Muscarínico M2 , Receptores Muscarínicos/efectos de los fármacos , Escopolamina/farmacología
10.
Sleep ; 24(1): 52-62, 2001 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-11204054

RESUMEN

STUDY OBJECTIVES: Opioids delivered to the pons inhibit REM sleep, whereas pontine administration of adenosine enhances REM sleep. In other brain areas opioids and adenosine interact to produce antinociception. Adenosine A1 receptors and mu opioid receptors each activate Gi/Go proteins. This study tested the hypothesis that combined treatment with the adenosine A1 receptor agonist SPA and the mu opioid agonist DAMGO would enhance G protein activation to a greater level than produced by either agonist alone. G protein activation was quantified in seven brainstem regions regulating sleep and nociception. This study also tested the hypothesis that G protein activation caused by SPA would be concentration dependent and blocked by the adenosine A1 receptor antagonist DPCPX. DESIGN: Activation of G proteins was assessed autoradiographically by agonist stimulation of [35S]GTPgammaS binding in slide-mounted sections of rat brainstem. G protein activation was quantified in nCi/g tissue for pontine reticular formation, dorsal raphe, ventrolateral and dorsomedial periaqueductal gray, and laterodorsal and pedunculopontine tegmental nuclei. SETTING: N/A. PATIENTS OR PARTICIPANTS: N/A. MEASUREMENTS AND RESULTS: Combined treatment with SPA and DAMGO caused a partially additive increase in G protein activation that was significantly (p<0.01) greater than G protein activation caused by either agonist alone. Treatment with SPA alone caused a concentration dependent (p<0.001) increase in [35S]GTPgammaS binding that was blocked by DPCPX. CONCLUSION: Agonist activation of adenosine A1 receptors stimulates G proteins in brainstem nuclei regulating sleep and nociception. In these same nuclei, G protein activation by combined treatment with DAMGO and SPA was partially additive, suggesting that mu opioid and adenosine A1 receptors activate some common G protein pools.


Asunto(s)
Analgésicos Opioides/farmacología , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Proteínas de Unión al GTP/metabolismo , Mesencéfalo/efectos de los fármacos , Mesencéfalo/metabolismo , Receptores Opioides mu/efectos de los fármacos , Receptores Purinérgicos P1/efectos de los fármacos , Animales , Autorradiografía , Unión Competitiva/efectos de los fármacos , Quimioterapia Combinada , Masculino , Nociceptores/efectos de los fármacos , Puente/efectos de los fármacos , Puente/metabolismo , Núcleos del Rafe/efectos de los fármacos , Núcleos del Rafe/metabolismo , Ratas , Ratas Sprague-Dawley , Formación Reticular/efectos de los fármacos , Formación Reticular/metabolismo , Sueño REM/efectos de los fármacos , Xantinas/farmacología
11.
Sleep ; 22(7): 835-47, 1999 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-10566902

RESUMEN

Rapid eye movement (REM) sleep is generated, in part, by activating muscarinic cholinergic receptors (mAChRs) in the medial pontine reticular formation (mPRF). Molecular cloning has identified five mAChR subtypes, and this study tested the hypothesis that the M2 subtype in the mPRF modulates the amount of REM sleep. This hypothesis cannot be tested directly, due to lack of subtype selective muscarinic agonists. However, the amount of REM sleep can be enhanced by mPRF microinjection of a muscarinic agonist, and the relative potencies of muscarinic antagonists to block the REM sleep enhancement can be determined. Two muscarinic antagonists, methoctramine and 4-DAMP, were studied. Six concentrations of each antagonist were microinjected into the mPRF of conscious cat 15 min prior to the agonist bethanechol. Nonlinear regression analysis was used to calculate the dose of antagonist that caused a 50% inhibition (ID50) of bethanechol-induced REM sleep. Bethanechol significantly increased (442%) the amount of time spent in REM sleep. Both methoctramine and 4-DAMP significantly blocked the bethanechol-induced REM sleep increase, with an ID50 of 1.8 microM and 0.6 microM, respectively. The ID50 ratio for methoctramine-to-4-DAMP (3.0) was similar to the affinity ratio of methoctramine-to-4-DAMP only at the M2 subtype (3.5), suggesting that the M2 subtype in the mPRF modulates the amount of REM sleep. This study also tested the null hypothesis that sleep-dependent respiratory depression evoked by mPRF cholinomimetics would not be antagonized by pretreatment of the mPRF with muscarinic antagonists. Neither methoctramine nor 4-DAMP antagonized the bethanechol-induced decrease in respiratory rate.


Asunto(s)
Diaminas/farmacocinética , Antagonistas Muscarínicos/farmacocinética , Piperidinas/farmacocinética , Puente/metabolismo , Receptores Muscarínicos/metabolismo , Formación Reticular/metabolismo , Sueño REM/efectos de los fármacos , Animales , Betanecol/antagonistas & inhibidores , Gatos , Agonistas Muscarínicos/metabolismo , Respiración/efectos de los fármacos , Factores de Tiempo , Vigilia/efectos de los fármacos
12.
Anesthesiology ; 90(4): 1070-7, 1999 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10201679

RESUMEN

BACKGROUND: Opioids inhibit the rapid eye movement (REM) phase of sleep and decrease acetylcholine (ACh) release in medial pontine reticular formation (mPRF) regions contributing to REM sleep generation. It is not known whether opioids decrease ACh release by acting on cholinergic cell bodies or on cholinergic axon terminals. This study used in vivo microdialysis to test the hypothesis that opioids decrease ACh levels at cholinergic neurons in the laterodorsal tegmental nuclei (LDT) and LDT axon terminals in the mPRF. METHODS: Nine male cats were anesthetized with halothane, and ACh levels within the mPRF or LDT were assayed using microdialysis and high-pressure liquid chromatography (HPLC). ACh levels were analyzed in response to dialysis of the mPRF and LDT with Ringer's solution (control), followed by dialysis with Ringer's solution containing morphine sulfate (MSO4) or naloxone. ACh in the mPRF also was measured during either dialysis delivery or intravenous infusion of remifentanil and during dialysis delivery of fentanyl. RESULTS: Compared with dialysis of Ringer's solution, microdialysis with MSO4 decreased ACh by 23% in the mPRF and by 30% in the LDT. This significant decrease in ACh was antagonized by naloxone. MSO4 and fentanyl each caused a dose-dependent decrease in mPRF ACh when delivered by dialysis. Remifentanil delivered by continuous intravenous infusion or by dialysis into the mPRF did not alter mPRF ACh. CONCLUSIONS: Morphine inhibits ACh at the cholinergic cell body region (LDT) and the terminal field in the mPRF. ACh in the mPRF was not altered by remifentanil and was significantly decreased by fentanyl. Thus, MSO4 and fentanyl disrupt cholinergic neurotransmission in the LDT-mPRF network known to modulate REM sleep and cortical electroencephalographic activation. These data are consistent with the possibility that inhibition of pontine cholinergic neurotransmission contributes to arousal state disruption by opioids.


Asunto(s)
Acetilcolina/metabolismo , Analgésicos Opioides/farmacología , Nivel de Alerta/efectos de los fármacos , Fentanilo/farmacología , Morfina/farmacología , Piperidinas/farmacología , Puente/efectos de los fármacos , Animales , Gatos , Masculino , Naloxona/farmacología , Puente/metabolismo , Remifentanilo
13.
Neuroreport ; 9(13): 3025-8, 1998 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-9804309

RESUMEN

Mu opioid receptors within the pontine reticular formation contribute to opioid-induced rapid eye movement (REM) sleep inhibition. Mu receptors are coupled to guanine nucleotide binding (G) proteins and this study tested the hypothesis that the micro opioid agonist [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin (DAMGO) would activate G proteins in rat brain stem nuclei known to regulate REM sleep. In vitro autoradiography of DAMGO-stimulated [35S]GTPgammaS binding showed that, compared with basal [35S]GTPgammaS binding, DAMGO significantly increased G protein activation in the nucleus pontis oralis (56.2%), nucleus pontis caudalis (57.3%), laterodorsal tegmental nucleus (75.8%), pedunculopontine tegmental nucleus (72.4%), nucleus locus coeruleus (77.2%) and dorsal raphe nucleus (73.4%). DAMGO stimulation of [35S]GTPgammaS binding in nuclei regulating REM sleep suggests that opioid-induced REM sleep inhibition involves activation of G proteins.


Asunto(s)
Tronco Encefálico/efectos de los fármacos , Proteínas de Unión al GTP/metabolismo , Narcóticos/farmacología , Sueño REM/fisiología , Animales , Autorradiografía/métodos , Tronco Encefálico/química , Tronco Encefálico/fisiología , Encefalina Ala(2)-MeFe(4)-Gli(5) , Encefalinas/farmacología , Proteínas de Unión al GTP/efectos de los fármacos , Guanosina 5'-O-(3-Tiotrifosfato)/análisis , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Masculino , Puente/química , Puente/efectos de los fármacos , Puente/fisiología , Unión Proteica , Ratas , Ratas Sprague-Dawley , Receptores Opioides mu/agonistas , Radioisótopos de Azufre
14.
J Pharmacol Exp Ther ; 286(3): 1446-52, 1998 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-9732410

RESUMEN

Muscarinic autoreceptors regulate acetylcholine (ACh) release in several brain regions, including the medial pontine reticular formation (mPRF). This study tested the hypothesis that the muscarinic cholinergic receptor mediating mPRF ACh release is the pharmacologically defined M2 subtype. In vivo microdialysis was used to deliver muscarinic cholinergic receptor (MAChR) antagonists to the feline mPRF while simultaneously measuring endogenously released ACh. The lowest concentration of each antagonist that caused a significant increase in mPRF ACh release was determined and defined as the minimum ACh-releasing concentration. Data obtained from 41 mPRF dialysis sites in 10 animals showed that the order of potency (followed by the minimum ACh-releasing concentration) was scopolamine (1 nM) > AF-DX 116 (3 nM) > pirenzepine (300 nM). Comparison of these minimum ACh-releasing concentrations to the known affinities of the antagonists for the five mAChR subtypes is consistent with the conclusion that the autoreceptor regulating mPRF ACh release is the M2 subtype. Considerable evidence supports a role for cholinergic neurotransmission and postsynaptic M2 receptors in the mPRF in regulating levels of arousal. The present data suggest that presynaptic M2 receptors contribute to the regulation of arousal states by modulating mPRF ACh release.


Asunto(s)
Acetilcolina/metabolismo , Autorreceptores/fisiología , Receptores Muscarínicos/fisiología , Formación Reticular/metabolismo , Animales , Autorreceptores/clasificación , Gatos , Masculino , Microdiálisis , Antagonistas Muscarínicos/farmacología , Receptor Muscarínico M2 , Escopolamina/farmacología , Sueño REM
15.
J Neurosci ; 18(10): 3779-85, 1998 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-9570808

RESUMEN

Carbachol enhances rapid eye movement (REM) sleep when microinjected into the pontine reticular formation of the cat and rat. Carbachol elicits this REM sleep-like state via activation of postsynaptic muscarinic cholinergic receptors (mAChRs). The present study used in vitro autoradiography of carbachol-stimulated [35S]guanylyl-5'-O-(gamma-thio)-triphosphate ([35S]GTPgammaS) binding to test the hypothesis that carbachol activates mAChRs to induce stimulation of G-proteins in brainstem nuclei contributing to REM sleep generation. The results demonstrate a heterogeneous increase in carbachol-stimulated G-protein activation across rat brainstem. Binding of [35S]GTPgammaS in the presence of carbachol, compared with basal binding, was significantly increased in the laterodorsal tegmental nucleus (75.7%), caudal pontine reticular nucleus (68.9%), oral pontine reticular nucleus (64.5%), pedunculopontine tegmental nucleus (55.7%), and dorsal raphe nucleus (54.0%) but not in the nucleus locus coeruleus. The activation of G-proteins by carbachol was concentration-dependent and antagonized by atropine, demonstrating that G-proteins were activated via mAChR stimulation. The results provide the first direct measures of mAChR-activated G-proteins in brainstem nuclei known to contribute to REM sleep generation.


Asunto(s)
Carbacol/farmacología , Guanosina 5'-O-(3-Tiotrifosfato)/farmacología , Agonistas Muscarínicos/farmacología , Formación Reticular/fisiología , Sueño REM/fisiología , Animales , Atropina/farmacología , Autorradiografía , Proteínas de Unión al GTP/fisiología , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Procesamiento de Imagen Asistido por Computador , Locus Coeruleus/fisiología , Masculino , Antagonistas Muscarínicos/farmacología , Núcleos del Rafe/fisiología , Ratas , Ratas Sprague-Dawley , Formación Reticular/efectos de los fármacos , Radioisótopos de Azufre
16.
Sleep ; 21(7): 677-85, 1998 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-11286343

RESUMEN

Sleep disruption is a significant problem associated with the subjective experience of pain. Both rapid-eye-movement (REM) sleep and nociception are modulated by cholinergic neurotransmission, and this study tested the hypothesis that antinociceptive behavior can be evoked cholinergically from medial pontine reticular formation (mPRF) regions known to regulate REM sleep. The foregoing hypothesis was investigated by quantifying the effect of mPRF drug administration on tail flick latency (TFL) of cat during polygraphically defined sleep/wake states. The mPRF was microinjected with 0.25 ml saline, carbachol (4.0 microg), neostigmine (6.7 microg), or morphine sulfate (14.7 microg), and TFL measures were obtained in response to radiant heat. During wakefulness TFL (% increase) was not increased by morphine or saline, but was significantly increased by mPRF administration of carbachol (42.4%) and neostigmine (35.2%). Cortical somatosensory potentials (SSEPs) were reliably evoked by tail stimulation before and after mPRF microinjections of carbachol. The results show for the first time that mPRF administration of cholinomimetics significantly increased TFL. During NREM sleep and REM sleep, TFL was significantly increased compared to waking TFL (110% and 321%, respectively). The finding of sleep-dependent alterations in TFL demonstrates that mPRF regions known to regulate REM sleep can modulate supraspinal cholinergic antinociceptive behavior.


Asunto(s)
Carbacol/farmacología , Colinérgicos/farmacología , Morfina/farmacología , Narcóticos/farmacología , Neostigmina/farmacología , Nociceptores/efectos de los fármacos , Puente/efectos de los fármacos , Formación Reticular/efectos de los fármacos , Sueño REM/efectos de los fármacos , Análisis de Varianza , Animales , Gatos , Fibras Colinérgicas/efectos de los fármacos , Potenciales Evocados Somatosensoriales/fisiología , Masculino , Polisomnografía , Transmisión Sináptica/efectos de los fármacos , Vigilia/efectos de los fármacos
17.
Am J Physiol ; 273(4): R1430-40, 1997 10.
Artículo en Inglés | MEDLINE | ID: mdl-9362309

RESUMEN

Cholinergic neurotransmission in the medial pontine reticular formation (mPRF) modulates rapid eye movement (REM) sleep generation. Microinjection of cholinergic agonists and acetylcholinesterase inhibitors into the mPRF induces a REM sleep-like state, and microdialysis data reveal increased mPRF levels of acetylcholine during REM sleep. Muscarinic cholinergic receptors (mAChRs) participate in REM sleep generation, and data suggest that mAChRs of a non-M1 subtype modulate REM sleep generation. The signal transduction pathway activated by m2 and m4 mAChRs involves a pertussis toxin-sensitive G protein, adenylate cyclase (AC), adenosine 3',5'-cyclic monophosphate (cAMP), and protein kinase A (PKA). Therefore, the present study tested the hypothesis that cAMP and PKA within the mPRF modulate the carbachol-induced REM sleep-like state. To test this hypothesis, the mPRF was microinjected with compounds known to facilitate the effects of cAMP (dibutyryl cAMP and 8-bromo-cAMP), stimulate PKA (Sp-cAMP[S]), and inhibit PKA (Rp-cAMP[S]). The results showed that compounds that fostered the intracellular effects of cAMP significantly decreased cholinergic REM sleep, while having no effect on spontaneously occurring REM sleep. These data are consistent with the recent finding that within the mPRF, AC and a pertussis toxin-sensitive G protein modulate cholinergic REM sleep generation. These new data suggest a modulatory role for pontine cAMP and PKA in cholinergic REM sleep regulation.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , AMP Cíclico/fisiología , Receptores Colinérgicos/fisiología , Sueño REM/fisiología , 8-Bromo Monofosfato de Adenosina Cíclica/farmacología , Animales , Bucladesina/farmacología , Carbacol/farmacología , Gatos , AMP Cíclico/agonistas , AMP Cíclico/análogos & derivados , Masculino , Microinyecciones , Agonistas Muscarínicos/farmacología , Puente/fisiología , Sueño REM/efectos de los fármacos , Factores de Tiempo
18.
Neuroreport ; 8(2): 481-4, 1997 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-9080433

RESUMEN

The vesamicol-like compound (+/-)-4-aminobenzovesamicol (ABV) non-competitively inhibits vesicular packaging of acetylcholine (ACh) in presynaptic terminals. This study tested the hypothesis that microinjection of ABV into the medial pontine reticular formation (mPRF) of intact, unanesthetized cats would inhibit rapid eye movement (REM) sleep. Microinjection of ABV alone or before administration of the acetylcholinesterase inhibitor neostigmine was used to evaluate the effects of ABV on natural REM sleep and on the neostigmine-induced REM sleep-like state. ABV decreased (24.8%) REM sleep and significantly reduced (33.6%) the neostigmine-induced REM sleep-like state. The results show for the first time that REM sleep generation can be disrupted by blocking a synaptic vesicle protein that modulates ACh transport in localized regions of the mPRF.


Asunto(s)
Acetilcolina/metabolismo , Piperidinas/farmacología , Puente/efectos de los fármacos , Terminales Presinápticos/efectos de los fármacos , Sueño REM/efectos de los fármacos , Animales , Transporte Biológico/fisiología , Gatos , Masculino
19.
J Neurosci ; 17(2): 774-85, 1997 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-8987799

RESUMEN

Pontine cholinergic neurotransmission is known to play a key role in the regulation of rapid eye movement (REM) sleep and to contribute to state-dependent respiratory depression. Nitric oxide (NO) has been shown to alter the release of acetylcholine (ACh) in a number of brain regions, and previous studies indicate that NO may participate in the modulation of sleep/wake states. The present investigation tested the hypothesis that inhibition of NO synthase (NOS) within the medial pontine reticular formation (mPRF) of the unanesthetized cat would decrease ACh release, inhibit REM sleep, and prevent cholinergically mediated respiratory depression. Local NOS inhibition by microdialysis delivery of N(G)-nitro-L-arginine (NLA) significantly reduced ACh release in the cholinergic cell body region of the pedunculopontine tegmental nucleus and in the cholinoceptive mPRF. A second series of experiments demonstrated that mPRF microinjection of NLA significantly reduced the amount of REM sleep and the REM sleep-like state caused by mPRF injection of the acetylcholinesterase inhibitor neostigmine. Duration but not frequency of REM sleep epochs was significantly decreased by mPRF NLA administration. Injection of NLA into the mPRF before neostigmine injection also blocked the ability of neostigmine to decrease respiratory rate during the REM sleep-like state. Taken together, these findings suggest that mPRF NO contributes to the modulation of ACh release, REM sleep, and breathing.


Asunto(s)
Acetilcolina/metabolismo , Fibras Colinérgicas/metabolismo , Óxido Nítrico/fisiología , Puente/fisiología , Respiración/fisiología , Sueño REM/fisiología , Anestésicos por Inhalación/farmacología , Animales , Nivel de Alerta/efectos de los fármacos , Gatos , Cromatografía Líquida de Alta Presión , Inhibidores Enzimáticos/farmacología , Halotano/farmacología , Masculino , Microdiálisis , Microinyecciones , Modelos Neurológicos , Neostigmina/farmacología , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Nitroarginina/farmacología , Parasimpaticomiméticos/farmacología , Polisomnografía , Puente/efectos de los fármacos , Puente/metabolismo , Respiración/efectos de los fármacos , Tasa de Secreción/efectos de los fármacos , Sueño REM/efectos de los fármacos
20.
Curr Opin Pulm Med ; 2(6): 474-81, 1996 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-9363188

RESUMEN

Although sleep and anesthesia are distinctly different states of consciousness, they manifest some common physiologic traits, including respiratory depression. Support is lacking for the concept of any unitary mechanism causing the loss of wakefulness and the respiratory depression associated with sleep or anesthesia. A recently emerging view is that brain mechanisms, which have evolved to generate naturally occurring states of consciousness, are preferentially involved in generating traits characterizing some anesthetic states. The brain stem reticular formation mediates four functions of direct relevance for sleep and anesthesia. Recent work is selectively reviewed showing that brain stem cholinergic and monoaminergic neurons alter breathing while modulating behavioral states, muscle tone, cardiopulmonary control, and pain sensation. The ability of these four functions to influence breathing also makes clear their potential to serve as confounding variables in experimental models from which they are ignored or systematically excluded.


Asunto(s)
Anestesia General , Respiración/fisiología , Formación Reticular/fisiología , Sueño/fisiología , Animales , Monoaminas Biogénicas/fisiología , Fibras Colinérgicas/fisiología , Estado de Conciencia/fisiología , Modelos Animales de Enfermedad , Corazón/fisiología , Humanos , Pulmón/fisiología , Contracción Muscular/fisiología , Neurofisiología , Dolor/fisiopatología , Inconsciencia/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA