RESUMEN
Gallbladder cancer (GBC) performs strongly invasive and poor prognosis, and adenocarcinoma is the most common histological type in it. Statistically, the 5-year survival rate of patients with advanced GBC is less than 5%. Such dismal outcome might be caused by chemotherapy resistance and native biology of tumor cells, regardless of emerging therapeutic strategies. Early diagnosis, depending on biomarkers, receptors and secretive proteins, is more important than clinical therapy, guiding the pathologic stage of cancer and the choice of medication. Therefore, it is in urgent need to understand the specific pathogenesis of GBC and strive to find promising novel biomarkers for early screening in GBC. Non-coding RNAs (ncRNAs), especially microRNAs (miRNAs, miRs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are confirmed to participate in and regulate the occurrence and development of GBC. Exceptionally, lncRNAs and circRNAs could act as competing endogenous RNAs (ceRNAs) containing binding sites for miRNAs and crosstalk with miRNAs to target regulatory downstream protein-coding messenger RNAs (mRNAs), thus affecting the expression levels of specific proteins to participate in and regulate the development and progression of GBC. It follows that ncRNAs may become promising biomarkers and potential therapeutic targets for GBC. In this review, we mainly summarize the recent research progress of miRNAs and lncRNAs in regulating the development and progression of GBC, chemoresistance, and predicting the prognosis of patients, and highlight the potential applications of the lncRNA/circRNA-miRNA-mRNA cross-regulatory networks in early diagnosis, chemoresistance, and prognostic evaluation, aiming to better understand the pathogenesis of GBC and develop new diagnostic and therapeutic strategies.
Asunto(s)
Neoplasias de la Vesícula Biliar , MicroARNs , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias de la Vesícula Biliar/diagnóstico , Neoplasias de la Vesícula Biliar/genética , Neoplasias de la Vesícula Biliar/metabolismo , ARN Circular , MicroARNs/genética , MicroARNs/metabolismo , Biomarcadores de Tumor/genéticaRESUMEN
Colorectal cancer (CRC) is the third most common malignant tumor worldwide and the fourth major cause of cancer-related death, with high morbidity and increased mortality year by year. Although significant progress has been made in the therapy strategies for CRC, the great difficulty in early diagnosis, feeble susceptibility to radiotherapy and chemotherapy, and high recurrence rates have reduced therapeutic efficacy resulting in poor prognosis. Therefore, it is urgent to understand the pathogenesis of CRC and unravel novel biomarkers to improve the early diagnosis, treatment and prediction of CRC recurrence. Long non-coding RNAs (lncRNAs) are non-coding RNAs with a length of more than 200 nucleotides, which are abnormally expressed in tumor tissues and cell lines, activating or inhibiting specific genes through multiple mechanisms including transcription and translation. A growing number of studies have shown that lncRNAs are important regulators of microRNAs (miRNAs, miRs) expression in CRC and may be promising biomarkers and potential therapeutic targets in the research field of CRC. This review mainly summarizes the potential application value of lncRNAs as novel biomarkers in CRC diagnosis, radiotherapy, chemotherapy and prognosis. Additionally, the significance of lncRNA SNHGs family and lncRNA-miRNA networks in regulating the occurrence and development of CRC is mentioned, aiming to provide some insights for understanding the pathogenesis of CRC and developing new diagnostic and therapeutic strategies.
Asunto(s)
Neoplasias Colorrectales , MicroARNs , ARN Largo no Codificante , Biomarcadores de Tumor/genética , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/terapia , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Recurrencia Local de Neoplasia/genética , Pronóstico , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismoRESUMEN
The effects of different thawing methods (air thawing, water soak thawing, refrigeration thawing, low frequency ultrasound thawing at 160, 240, 320 and 400 W) on thawing time, thawing loss, cooking loss, water-holding capacity and texture of frozen squid were investigated. The results showed that thawing loss and thawing time were reduced significantly ( p < 0.05) by ultrasound thawing compared with the water soak thawing and air thawing, but the cooking loss had no significant difference ( p > 0.05). Results of the ultrasound thawing especially at 160 and 240 W on microstructure showed less destructive effect on muscle. The microstructure of the muscle was destroyed significantly after air thawing and water soak thawing compared with the ultrasound thawing, which showed that more fibre structure was broken and the gap between the muscle fibres was increased significantly. Low-field NMR results showed that the ability of immobile water shifting to free water after ultrasound thawing was lower than air thawing and water soak thawing, which was consistent with the results of thawing loss and cooking loss. Ultrasound thawing might be chosen as an alternative method to enhance the quality during thawing process.
Asunto(s)
Decapodiformes , Manipulación de Alimentos/métodos , Congelación , Alimentos Marinos/análisis , Ondas Ultrasónicas , Animales , Culinaria , Humanos , Fibras Musculares Esqueléticas , AguaRESUMEN
The aggregations of tau protein in brain tissue have been described in a large number of neurodegenerative diseases; however, due to the lack of tau isoform- or exon-specific antibodies, the exact situations under which various brain tau isoforms can be found and their exact contributions during disease progression remain unknown. Therefore, in this study, we prepared tau exon-specific monoclonal antibodies (mAbs) that recognize different mammalian tau isoforms. Briefly, 3 Balb/c mice were separately immunized (3 mice per antigen) with the recombinant GST-fusion proteins, GST-tE2 and GST-tE10. Two hybridoma cell lines, 4A8 and 3E12, secreting antibodies against human tau exon-2 and -10 were established using the hybridoma technique. The sensitivity and specificity of the prepared mAbs were evaluated using indirect ELISA and western blot analysis. The ability of the prepared mAbs, 4A8 and 3E12, to recognize endogenous tau protein in the brain tissues of various mammals was estimated by immunoprecipitation. Based on the results of various verification methods, we found that the prepared mAbs, 4A8 and 3E12, not only specifically reacted with the individual recombinant GST tau exon fusion proteins, but also correctly recognized the recombinant human tau isoforms containing respective exon sequences, as shown by western blot analysis. Furthermore, western blot analysis and immunoprecipitation assays verified that the mAbs, 4A8 and 3E12, recognized endogenous tau proteins in human brain tissue, as well as tau proteins in a series of mammalian tissues, including goat, bovine, rabbit, hamster and mouse. Thus, in the present study, using the hybridoma technique, we successfully prepared the mAbs, 4A8 against tau exon-2 and 3E12 against tau exon-10, which provide useful tools for determining potential alternations of tau isoforms in neurodegenerative diseases.