RESUMEN
INTRODUCTION AND OBJECTIVES: This study aimed to explore the functional mechanism of the miRNA-20b-5p/cytoplasmic polyadenylation element binding protein 3 (miR-20b-5p/CPEB3) axis in hepatocellular carcinoma (HCC) so as to provide a new idea for targeted therapy of HCC. MATERIALS AND METHODS: Bioinformatics analysis was employed to obtain markedly differentially expressed miRNAs and mRNAs in The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset, so as to find target miRNA and its target mRNA. Real-time quantitative PCR was conducted to detect miR-20b-5p and CPEB3 mRNA expression. Western blot was performed to determine CPEB3 protein expression. Dual-luciferase reporter assay was carried out to verify the targeting relationship between miR-20b-5p and CPEB3. Cell counting kit-8 assay, wound healing assay, Transwell invasion assay and flow cytometry were conducted to evaluate the proliferation, migration, invasion and apoptosis of HCC cells. RESULTS: Bioinformatics analysis suggested that miR-20b-5p and CPEB3 were markedly highly and lowly expressed, respectively, in HCC tissue in TCGA-LIHC dataset. Over-expressing miR-20b-5p facilitated the proliferation, migration and invasion, and suppressed the apoptosis of HCC cells. Dual-luciferase reporter assay validated that there was a targeting relationship between miR-20b-5p and CPEB3. The inhibitory effect of CPEB3 over-expression on HCC cell proliferation, migration and invasion was reversed by over-expressing miR-20b-5p. CONCLUSIONS: The present study proved that miR-20b-5p promotes HCC cell proliferation, migration and invasion by inhibiting CPEB3 expression, which may provide a theoretical basis for the prognosis and treatment of HCC patients.