Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros











Intervalo de año de publicación
1.
Scientifica (Cairo) ; 2024: 5791613, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938545

RESUMEN

The aim of this study is to explore the mechanism by which ARHGAP4 regulates the proliferation and growth of colon cancer cells, and it relates to the metastasis of colorectal cancer (CRC). Various techniques including western blot, CCK8, qRT-PCR, RNA seq assay, plate cloning, subcutaneous tumorigenesis assays, and bioinformatics tools were employed to identify genes that were upregulated or downregulated upon ARHGAP4 knockdown and their involvement in tumor cell proliferation and growth. The expression of ARHGAP4 in T and M stages of CRC uses immunohistochemistry. The expression levels of ARHGAP4 were found to be high in SW620, SW480, and HCT116 cell lines, while they were being low in HT29, LoVo, and NCM460 cell lines. Depletion of ARHGAP4 resulted in inhibited proliferation and growth in SW620 cells and inhibited subcutaneous tumorigenesis in nude mice, whereas overexpression of ARHGAP4 promoted proliferation and growth in HT29 cells and promoted subcutaneous tumorigenesis in nude mice. A total of 318 upregulated genes and 637 downregulated genes were identified in SW620 cells upon ARHGAP4 knockdown. The downregulated genes were primarily associated with cell cycle pathways, while the upregulated genes were enriched in differentiation-related pathways. Notable upregulated genes involved in cell differentiation included KRT10, KRT13, KRT16, IVL, and CD24, while significant downregulation was observed in genes related to the cell cycle such as CCNA2, CDKN2C, CDKN3, CENPA, and CENPF. ARHGAP4 expression is markedly elevated in the M1 stage of CRC compared to the M0 stage, suggesting ARHGAP4 linked to the metastatic in CRC. ARHGAP4 regulates the proliferation and growth of colon cancer cells by up- and downregulated cell cycle and differentiation-related molecules, which may be related to the metastasis of CRC.

2.
Cell Death Discov ; 10(1): 167, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589400

RESUMEN

The neurotoxic α-synuclein (α-syn) oligomers play an important role in the occurrence and development of Parkinson's disease (PD), but the factors affecting α-syn generation and neurotoxicity remain unclear. We here first found that thrombomodulin (TM) significantly decreased in the plasma of PD patients and brains of A53T α-syn mice, and the increased TM in primary neurons reduced α-syn generation by inhibiting transcription factor p-c-jun production through Erk1/2 signaling pathway. Moreover, TM decreased α-syn neurotoxicity by reducing the levels of oxidative stress and inhibiting PAR1-p53-Bax signaling pathway. In contrast, TM downregulation increased the expression and neurotoxicity of α-syn in primary neurons. When TM plasmids were specifically delivered to neurons in the brains of A53T α-syn mice by adeno-associated virus (AAV), TM significantly reduced α-syn expression and deposition, and ameliorated the neuronal apoptosis, oxidative stress, gliosis and motor deficits in the mouse models, whereas TM knockdown exacerbated these neuropathology and motor dysfunction. Our present findings demonstrate that TM plays a neuroprotective role in PD pathology and symptoms, and it could be a novel therapeutic target in efforts to combat PD. Schematic representation of signaling pathways of TM involved in the expression and neurotoxicity of α-syn. A TM decreased RAGE, and resulting in the lowered production of p-Erk1/2 and p-c-Jun, and finally reduce α-syn generation. α-syn oligomers which formed from monomers increase the expression of p-p38, p53, C-caspase9, C-caspase3 and Bax, decrease the level of Bcl-2, cause mitochondrial damage and lead to oxidative stress, thus inducing neuronal apoptosis. TM can reduce intracellular oxidative stress and inhibit p53-Bax signaling by activating APC and PAR-1. B The binding of α-syn oligomers to TLR4 may induce the expression of IL-1ß, which is subsequently secreted into the extracellular space. This secreted IL-1ß then binds to its receptor, prompting p65 to translocate from the cytoplasm into the nucleus. This translocation downregulates the expression of KLF2, ultimately leading to the suppression of TM expression. By Figdraw.

3.
Aging Dis ; 15(1): 369-389, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37307823

RESUMEN

Patients with cholangiocarcinoma (CCA) with lymph node metastasis (LNM) have the worst prognosis, even after complete resection; however, the underlying mechanism remains unclear. Here, we established CAF-derived PDGF-BB as a regulator of LMN in CCA. Proteomics analysis revealed upregulation of PDGF-BB in CAFs derived from patients with CCA with LMN (LN+CAFs). Clinically, the expression of CAF-PDGF-BB correlated with poor prognosis and increased LMN in patients with CCA, while CAF-secreted PDGF-BB enhanced lymphatic endothelial cell (LEC)-mediated lymphangiogenesis and promoted the trans-LEC migration ability of tumor cells. Co-injection of LN+CAFs and cancer cells increased tumor growth and LMN in vivo. Mechanistically, CAF-derived PDGF-BB activated its receptor PDGFR-ß and its downstream ERK1/2-JNK signaling pathways in LECs to promote lymphoangiogenesis, while it also upregulated the PDGFR-ß-GSK-P65-mediated tumor cell migration. Finally, targeting PDGF-BB/PDGFR-ß or the GSK-P65 signaling axis prohibited CAF-mediated popliteal lymphatic metastasis (PLM) in vivo. Overall, our findings revealed that CAFs promote tumor growth and LMN via a paracrine network, identifying a promising therapeutic target for patients with advanced CCA.


Asunto(s)
Neoplasias de los Conductos Biliares , Fibroblastos Asociados al Cáncer , Colangiocarcinoma , Humanos , Becaplermina , Metástasis Linfática , Fibroblastos Asociados al Cáncer/metabolismo , Comunicación Paracrina , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Colangiocarcinoma/metabolismo , Conductos Biliares Intrahepáticos/metabolismo , Neoplasias de los Conductos Biliares/metabolismo
4.
J Assist Reprod Genet ; 41(2): 363-370, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38079076

RESUMEN

OBJECTIVE: In vitro fertilization-embryo transfer (IVF-ET) is a widely used treatment for infertility, with oocyte maturation and quality having a significant impact on oocyte fertilization, embryo development, and fetal growth. Mitochondrial transcription factor A (TFAM) is essential for maintaining the mitochondrial oxidative respiratory chain and supplying energy for oocyte development, fertilization, and embryonic development. In this study, we aimed to examine TFAM expression in women undergoing IVF-ET and assess its impact on the IVF outcomes. METHODS: We recruited 85 women who underwent IVF-ET treatment for infertility. On the date of egg collection, granulosa cells were extracted from the clear follicular fluid of the first mature egg using ultrasound-guided needle aspiration. The collected granulosa cells served three purposes: (1) detecting TFAM gene expression in granulosa cells via immunocytochemistry, (2) determining TFAM mRNA expression using reverse transcription-PCR (RT-PCR), and (3) measuring TFAM protein expression through western blotting. RESULT: Based on the results, we found that TFAM was localized and expressed in the cytoplasm of granulosa cells, whereas no expression was detected in the nucleus. Granulosa cells exhibited a linear correlation between TFAM mRNA and TFAM protein expression. The study participants were divided into three groups using the ternary method based on relative TFAM mRNA expression thresholds of 33% and 76%: the low-expression group (n = 30), the moderate-expression group (n = 27), and the high-expression group (n = 28). When compared to the other two groups, the moderate expression group exhibited a significantly higher egg utilization rate, 2 pronucleus rate, fertilization rate, and clinical pregnancy rate (P < 0.05). CONCLUSION: TFAM was detected in the cytoplasm of human ovarian granulosa cells. Women with moderate TFAM expression demonstrate enhanced outcomes in IVF.


Asunto(s)
Proteínas de Unión al ADN , Fertilización In Vitro , Infertilidad , Proteínas Mitocondriales , Factores de Transcripción , Embarazo , Humanos , Femenino , Células de la Granulosa/metabolismo , Infertilidad/terapia , Oocitos/metabolismo , ARN Mensajero/metabolismo
5.
J Neuroimmune Pharmacol ; 18(4): 674-689, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37962810

RESUMEN

Multiple studies highlight the role of effector and regulatory CD4+T cells in the pathophysiology of Alzheimer's disease, and foster low-dose IL-2 treatment which induces regulatory CD4+T (Treg) cells expansion and activation as a promising strategy for its treatment. However, studies demonstrating discrepant Treg functions in AD have been reported. In addition, a compromised immune system associated with aging may substantially impact on these processes. Here, we report that there is an altered balance of activity between Treg cells and IL-17-producing helper T (Th17) cells in periphery and brain of APP/PS1 mice along the disease progression. A dramatic loss of the healthy balance of activity between Treg and Th17 cells was found at the middle disease stage. While peripheral low-dose recombinant human IL-2 administration could selectively modulate the abundance of Treg cells and repair the imbalance between Treg and Th17 subsets at the middle disease stage. We further show that modulation of peripheral immune balance through low-dose IL-2 treatment reduces the neuro-inflammation and increases numbers of plaque-associated microglia, accompanied by marked reduction of Aß plaque deposition and slower cognitive declines in APP/PS1 mice at the middle disease stage. Our study highlights the therapeutic potential of repurposed IL-2 for innovative immunotherapy based on modulation of the homeostasis of CD4+T cell subsets in Alzheimer's disease at the middle disease stage.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Células Th17 , Interleucina-2 , Linfocitos T Reguladores , Cognición
6.
NPJ Precis Oncol ; 7(1): 102, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821657

RESUMEN

Conventional chemotherapy targets malignant cells without evaluating counter protection from the tumor microenvironment that often causes treatment failure. Herein, we establish chemoresistant fibroblasts (rCAFs) as regulators of neoadjuvant chemotherapeutic (NACT) response in head and neck squamous cell carcinoma (HNSCC). Clinically, high expression of CAF-related gene signature correlates with worse prognosis and chemotherapeutic response in multiple cancers, while the population of CAFs in the residual tumors of chemoresistant HNSCC patients remains unchanged after NACT treatment, compared to chemosensitive patients. Using a murine cancer model or patient-derived organoid, and primary CAFs isolated from chemo-sensitive (sCAFs) or -resistant patients, we show that rCAFs, but not sCAFs, are resistant to chemotherapy-induced apoptosis while reducing HNSCC cell chemosensitivity via paracrine signals. Combined multi-omics and biochemical analyses indicate an elevated PI3K/AKT/p65 driven cell survival and cytokine production in rCAFs, while rCAF-secreted TGFα promotes cancer cell chemoresistance by activating EGFR/Src/STAT3 survival signaling axis. Treatment with anti-EGFR cetuximab restores the chemosensitivity of tumors derived from co-injection of cancer cells and rCAFs in vivo, while the serum level of TGFα determines NACT response in HNSCC patients. Overall, our findings uncover a novel insight whereby the crosstalk between tumor cell and rCAF determines chemotherapeutic response and prognosis in cancer patients.

7.
Stem Cell Reports ; 18(3): 720-735, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36801005

RESUMEN

Regenerating prolonged multi-lineage hematopoiesis from pluripotent stem cells (PSCs), an unlimited cell source, is a crucial aim of regenerative hematology. In this study, we used a gene-edited PSC line and revealed that simultaneous expression of three transcription factors, Runx1, Hoxa9, and Hoxa10, drove the robust emergence of induced hematopoietic progenitor cells (iHPCs). The iHPCs engrafted successfully in wild-type animals and repopulated abundant and complete myeloid-, B-, and T-lineage mature cells. The generative multi-lineage hematopoiesis distributed normally in multiple organs, persisted over 6 months, and eventually declined over time with no leukemogenesis. Transcriptome characterization of generative myeloid, B, and T cells at the single-cell resolution further projected their identities to natural cell counterparts. Thus, we provide evidence that co-expression of exogenous Runx1, Hoxa9, and Hoxa10 simultaneously leads to long-term reconstitution of myeloid, B, and T lineages using PSC-derived iHPCs as the cell source.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal , Células Madre Pluripotentes , Animales , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Diferenciación Celular/genética , Animales Salvajes , Hematopoyesis , Células Sanguíneas , Linaje de la Célula/genética
8.
Phys Rev Lett ; 129(4): 042502, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35938997

RESUMEN

We report microscopic many-body calculations indicating that rotational bands based on nuclear scissors vibrations exhibit systematic splitting between neighboring spin states (ΔI=2 bifurcation) in which the magnitude of the moment of inertia oscillates between states having even and odd spins. We show that this unexpected result is caused by self-organization of the deformed proton and neutron bodies in the scissors motion, which is further amplified by the K^{π}=1^{+} two-quasiparticle configurations near the scissors states. We propose that the puzzling excited state found above the 1^{+} scissors state in ^{156}Gd [Phys. Rev. Lett. 118, 212502 (2017)PRLTAO0031-900710.1103/PhysRevLett.118.212502] is the first evidence of this effect, and predict that bifurcation may generally appear in all other scissors rotational bands of deformed nuclei, and possibly in other systems exhibiting collective scissors vibrations.

9.
BMC Vet Res ; 17(1): 159, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33853603

RESUMEN

BACKGROUND: Immunoglobulins (Igs) distributed among systemic immune tissues and mucosal immune tissues play important roles in protecting teleosts from infections in the pathogen-rich aquatic environment. Teleost IgZ/IgT subclasses with different tissue expression patterns may have different immune functions. RESULTS: In the present study, a novel secreted IgZ heavy chain gene was cloned and characterized in common carp (Cyprinus carpio). This gene exhibited a different tissue-specific expression profile than the reported genes IgZ1 and IgZ2. The obtained IgZ-like subclass gene designated CcIgZ3, had a complete open reading frame contained 1650 bp encoding a protein of 549 amino acid residues. Phylogenetic analysis revealed that CcIgZ3 was grouped with carp IgZ2 and was in the same branch as IgZ/IgT genes of other teleosts. Basal expression detection of the immunoglobulin heavy chain (IgH) in healthy adult common carp showed that CcIgZ3 transcripts were widely expressed in systemic immune tissues and mucosal-associated lymphoid tissues. CcIgZ3 was expressed at the highest levels in the head kidneys, gills, and gonads, followed by the spleen, hindgut, oral epithelium, liver, brain, muscle, foregut, and blood; it was expressed at a very low level in the skin. The transcript expression of CcIgZ3 in leukocytes isolated from peripheral blood cells was significantly higher than that in leukocytes isolated from the spleen. Different groups of common carp were infected with Aeromonas hydrophila via intraperitoneal injection or immersion. RT-qPCR analysis demonstrated that significant differences in CcIgZ3 mRNA levels existed between the immersion and injection groups in all the examined tissues, including the head kidney, spleen, liver, and hindgut; in particular, the CcIgZ3 mRNA level in the hindgut was higher in the immersion group than in the injection group. The different routes of A. hydrophila exposure in common carp had milder effects on the IgM response than on the CcIgZ3 response. Further study of the relative expression of the IgH gene during the development of common carp showed that the tissue-specific expression profile of CcIgZ3 was very different from those of other genes. RT-qPCR analysis demonstrated that the CcIgZ3 mRNA level increased gradually in common carp during the early larval development stage from 1 day post fertilization (dpf) to 31 dpf with a dynamic tendency similar to those of IgZ1 and IgZ2, and IgM was the dominant Ig with obviously elevated abundance. Analyses of the tissue-specific expression of IgHs in common carp at 65 dpf showed that CcIgZ3 was expressed at mucosal sites, including both the hindgut and gill; in contrast, IgZ1 was preferentially expressed in the hindgut, and IgZ2 was preferentially expressed in the gill. In addition to RT-qPCR analysis, in situ hybridization was performed to detect CcIgZ3-expressing cells and IgM-expressing cells. The results showed that CcIgZ3 and IgM transcripts were detectable in the spleens, gills, and hindguts of common carp at 65 dpf. CONCLUSIONS: These results reveal that CcIgZ3 gene transcripts are expressed in common carp during developmental stage not only in systemic tissues but also in mucosal tissues. CcIgZ3 expression can be induced in immune tissues by A. hydrophila challenge via immersion and intraperitoneal injection with significantly different expression profiles, which indicates that CcIgZ3 is involved in the antimicrobial immune response and might play an important role in gut mucosal immunity.


Asunto(s)
Carpas/inmunología , Enfermedades de los Peces/inmunología , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/metabolismo , Aeromonas hydrophila/inmunología , Animales , Carpas/crecimiento & desarrollo , Clonación Molecular , Enfermedades de los Peces/microbiología , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Regulación del Desarrollo de la Expresión Génica , Cadenas Pesadas de Inmunoglobulina/química , Larva/inmunología , Filogenia , Análisis de Secuencia de Proteína
10.
Cell Rep ; 34(4): 108666, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33503420

RESUMEN

Although vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are under development, the antigen epitopes on the virus and their immunogenicity are poorly understood. Here, we simulate the 3D structures and predict the B cell epitopes on the spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins of SARS-CoV-2 using structure-based approaches and validate epitope immunogenicity by immunizing mice. Almost all 33 predicted epitopes effectively induce antibody production, six of these are immunodominant epitopes in individuals, and 23 are conserved within SARS-CoV-2, SARS-CoV, and bat coronavirus RaTG13. We find that the immunodominant epitopes of individuals with domestic (China) SARS-CoV-2 are different from those of individuals with imported (Europe) SARS-CoV-2, which may be caused by mutations on the S (G614D) and N proteins. Importantly, we find several epitopes on the S protein that elicit neutralizing antibodies against D614 and G614 SARS-CoV-2, which can contribute to vaccine design against coronaviruses.


Asunto(s)
Proteínas de la Nucleocápside de Coronavirus/inmunología , Epítopos de Linfocito B/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Proteínas de la Matriz Viral/inmunología , Proteínas Viroporinas/inmunología , Adolescente , Adulto , Anciano , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , COVID-19/inmunología , COVID-19/terapia , Vacunas contra la COVID-19/inmunología , Niño , Epítopos de Linfocito B/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Adulto Joven
12.
Environ Sci Pollut Res Int ; 28(30): 40568-40586, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32564323

RESUMEN

Pharmaceutical and personal care products (PPCPs) are a representative class of emerging contaminants. This study aimed to investigate the PPCP removal performance and application safety of a biochar fabricated using the invasive plant Alternanthera philoxeroides (APBC). According to scanning electron microscopy and pore size analyses, APBC exhibited a porous structure with a specific surface area of 857.5 m2/g. A Fourier transform infrared spectroscopy analysis indicated the presence of surface functional groups, including phosphorus-containing groups, C=O, C=C, and -OH. The adsorption experiment showed that the maximum removal efficiency of ibuprofen was 97% at an initial concentration of 10 mg/L and APBC dosage of 0.8 g/L. The adsorption kinetics were fitted by the pseudo-second-order model with the highest correlation coefficient (R2 = 0.9999). The adsorption isotherms were well described by the Freundlich model (R2 = 0.9896), which indicates a dominant multilayer adsorption. The maximum adsorption capacity of APBC was 172 mg/g. A toxicity evaluation, based on Chlorella pyrenoidosa and human epidermal BEAS-2B cells, was carried out using a spectrum analysis, thiazolyl blue tetrazolium bromide assay, and flow cytometry. The results of the above showed the low cytotoxicity of APBC and demonstrated its low toxicity in potential environmental applications.


Asunto(s)
Chlorella , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Humanos , Concentración de Iones de Hidrógeno , Ibuprofeno , Cinética , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/análisis
14.
Oncol Rep ; 44(5): 2231-2240, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33000272

RESUMEN

Estrogen receptor (ER)­negative breast tumors are associated with low survival rates, which is related to their ability to grow and metastasize into distal organs. The aryl hydrocarbon receptor (AhR), a ligand­activated transcription factor that is involved in several biological processes, is a promising anti­metastatic target. Luteolin, a non­toxic naturally occurring plant flavonoid with diverse biological activities, has been demonstrated to be effective against certain types of cancer, and has also been described as a ligand of AhR. In the present study, various cancer cell lines were first investigated following treatment with luteolin, and luteolin exhibited the lowest IC50 in MDA­MB­231 cells. Then, the efficiency of luteolin in suppressing the metastasis of ER­negative breast cancer in vitro was assessed. MDA­MB­231 cells were treated with luteolin in vitro. Subsequently, MTT assay and flow cytometry were used to detect cell viability, the cell cycle and apoptosis, and a Transwell assay was used to evaluate cell invasion. In addition, reverse transcription­semi­quantitative PCR and western blot were performed to detect the mRNA and protein expression levels of matrix metalloproteinase (MMP)­2 and MMP­9. In addition, the number of surface tumor nodules was measured in vivo, in mice bearing B16­F10 tumors, following treatment with luteolin. Luteolin inhibited the viability and induced the apoptosis of MDA­MB­231 cells, which was accompanied by cell cycle arrest. This was associated with a decrease in the expression of the pro­metastatic markers C­X­C chemokine receptor type 4 (CXCR4), MMP­2 and MMP­9, which was reversed by AhR inhibition. Furthermore, it was identified that luteolin could inhibit the metastasis in a B16F10 mouse xenograft model, and the levels of MMP­9, MMP­2 and CXCR4 were significantly decreased in the lung tissues isolated from tumor­bearing nude mice following luteolin treatment. In conclusion, luteolin is a potential molecule for inhibiting breast cancer invasion and metastasis, which could have promising clinical applications.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/agonistas , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Luteolina/farmacología , Receptores de Hidrocarburo de Aril/agonistas , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Ligandos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Luteolina/uso terapéutico , Masculino , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/genética , Ratones , Receptores de Hidrocarburo de Aril/metabolismo , Receptores CXCR4/genética
15.
J Immunother Cancer ; 8(2)2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32669292

RESUMEN

Tumor-associated antigen (TAA) T-cell receptor (TCR) gene-engineered T cells exhibit great potential in antitumor immunotherapy. Considering the high costs and low availability of patient-derived peripheral blood T cells, substantial efforts have been made to explore alternatives to natural T cells. We previously reported that enforced expression of Hoxb5 converted B cells into induced T (iT) cells in vivo Here, we successfully regenerated naive OT1 (major histocompatibility complex I restricted ovalbumin antigen) iT cells (OT1-iT) in vivo by expressing Hoxb5 in pro-pre-B cells in the OT1 transgenic mouse. The OT1-iT cells can be activated and expanded in vitro in the presence of tumor cells. Particularly, these regenerated OT1-iT cells effectively eradicated tumor cells expressing the TAA (ovalbumin) both in vitro and in vivo This study provides insights into the translational applications of blood lineage-transdifferentiated T cells in immunotherapy.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Inmunoterapia/métodos , Receptores de Antígenos de Linfocitos T/inmunología , Animales , Humanos , Ratones
16.
Neuroscience ; 432: 84-93, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32114100

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by motor neuron loss and gliosis in the spinal cord, brain stem and cortex. The Notch signaling pathway has been reported to be dysfunctional in neurodegenerative diseases, including ALS. However, the exact mechanism is still unclear. Here, we detected Notch signaling activation in proliferating glial cells, Notch inactivation in motor neurons in the spinal cord of the SOD1-G93A model, and dramatic changes of cellular relocalization of Notch pathway signaling molecules, including activated Notch intracellular domain (NICD), Notch ligands (Jagged1 and DLL4) and the target gene Hes1. We found that Notch activation was universal in proliferating astrocytes and that the Notch ligand Jagged1 was uniquely upregulated in proliferating microglia, while DLL4 expression was increased in both activated astrocytes and degenerating oligodendrocytes. Our results indicate that microglia may play an important role in the intercellular receptor-ligand interaction of the Notch signaling pathway and contribute to the pathogenesis of motor neuron loss in ALS mice. Further experiments are required to clarify the exact mechanism responsible for Notch dysfunction in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Transducción de Señal , Médula Espinal/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
17.
Cell Res ; 30(1): 21-33, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31729468

RESUMEN

Achievement of immunocompetent and therapeutic T lymphopoiesis from pluripotent stem cells (PSCs) is a central aim in T cell regenerative medicine. To date, preferentially reconstituting T lymphopoiesis in vivo from PSCs remains a practical challenge. Here we documented that synergistic and transient expression of Runx1 and Hoxa9 restricted in the time window of endothelial-to-hematopoietic transition and hematopoietic maturation stages in a PSC differentiation scheme (iR9-PSC) in vitro induced preferential generation of engraftable hematopoietic progenitors capable of homing to thymus and developing into mature T cells in primary and secondary immunodeficient recipients. Single-cell transcriptome and functional analyses illustrated the cellular trajectory of T lineage induction from PSCs, unveiling the T-lineage specification determined at as early as hemogenic endothelial cell stage and identifying the bona fide pre-thymic progenitors. The induced T cells distributed normally in central and peripheral lymphoid organs and exhibited abundant TCRαß repertoire. The regenerative T lymphopoiesis restored immune surveillance in immunodeficient mice. Furthermore, gene-edited iR9-PSCs produced tumor-specific T cells in vivo that effectively eradicated tumor cells. This study provides insight into universal generation of functional and therapeutic T cells from the unlimited and editable PSC source.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Proteínas de Homeodominio/genética , Linfopoyesis , Células Madre Pluripotentes/fisiología , Linfocitos T/inmunología , Animales , Células Cultivadas , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Células Madre Embrionarias/fisiología , Rechazo de Injerto/inmunología , Proteínas de Homeodominio/metabolismo , Linfopoyesis/genética , Ratones , Neoplasias Experimentales/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/química , Trasplante de Piel
18.
Blood Sci ; 2(3): 79-88, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35402823

RESUMEN

Numerous efforts have been attempted to regenerate T cells in culture dish from pluripotent stem cells (PSCs). However, in vitro generated T cells exhibited extremely low activity and compromised immunocompetency in vivo. Here, we describe a two-step protocol for regenerating functional T cells using an inducible Runx1-Hoxa9-PSC (iR9-PSCs) line. The procedure mainly includes generation of induced hematopoietic progenitor cells (iHPCs) in vitro, transplantation, and development of functional induced T cells (iT) in vivo via transplantation. The entire induction process in vitro requires 21 days before iHPCs transplantation. The development of mature T cells in vivo takes 4 to 6 weeks post-transplantation. We provide a simple and reproducible approach for functional T cell regeneration from iR9-PSCs for research purpose.

19.
Fish Shellfish Immunol ; 95: 25-34, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31610289

RESUMEN

p65 is an important subunit of the transcription factor NF-κB in the regulation of immune response. In the present study, the p65 cDNA was identified from common carp (Cyprinus carpio L.) (named Ccp65). Phylogenetic analysis revealed that Ccp65 located in the same clade as piscine p65 and exhibited closest relationship to that of Ctenopharyngodon idella. Ccp65 was constitutively expressed in all the examined tissues. Aeromonas hydrophila and poly(I:C) can induce the expression of Ccp65 in the designated tissues and the Ccp65 expression was up-regulated in HKLs following LPS and poly(I:C) stimulation. In addition, the nuclear localization signal (NLS) and C-terminal domain are the important elements of Ccp65. Immunofluorescence assay revealed that the nuclear localization signal deletion mutation of Ccp65 (Ccp65ΔNLS) failed to translocate to the nucleus even though stimulation with poly(I:C) or LPS, and the C-terminal domain deletion mutation of Ccp65 (Ccp65ΔC) did not up-regulate the luciferase activity. Furthermore, Ccp65 can induce the expression of il-1ß and tnf-α. And LPS and poly(I:C) inducing the expression of il-1ß and tnf-α, is dependent on the Ccp65. Taken altogether, these findings lay the foundations for future research to investigate the mechanisms underlying fish p65.


Asunto(s)
Carpas/metabolismo , Proteínas de Peces/genética , Inmunidad Innata , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , Aeromonas hydrophila , Animales , Carpas/genética , Carpas/inmunología , Suplementos Dietéticos/análisis , Proteínas de Peces/metabolismo , Expresión Génica/inmunología , Interleucina-1beta/metabolismo , Filogenia , Poli I-C/farmacología , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
20.
J Opt Soc Am A Opt Image Sci Vis ; 36(7): 1146-1151, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31503952

RESUMEN

By using the technique of integration within ordered product of operators, we put forward the combinatorial optical complex wavelet-fractional Fourier transform in the context of quantum optics. The unitary operator for this new transform is found and its normally ordered form is deduced. We apply this new transform to the two-mode vacuum state and the two-mode number state and explain that it can be used to analyze and identify various quantum optical states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA