RESUMEN
It has been suggested that traditional ecological knowledge (TEK) may play a key role in forest conservation. However, empirical studies assessing to what extent TEK is associated with forest conservation compared with other variables are rare. Furthermore, to our knowledge, the spatial overlap of TEK and forest conservation has not been evaluated at fine scales. In this paper, we address both issues through a case study with Tsimane' Amerindians in the Bolivian Amazon. We sampled 624 households across 59 villages to estimate TEK and used remote sensing data to assess forest conservation. We ran statistical and spatial analyses to evaluate whether TEK was associated and spatially overlapped with forest conservation at the village level. We find that Tsimane' TEK is significantly and positively associated with forest conservation although acculturation variables bear stronger and negative associations with forest conservation. We also find a very significant spatial overlap between levels of Tsimane' TEK and forest conservation. We discuss the potential reasons underpinning our results, which provide insights that may be useful for informing policies in the realms of development, conservation, and climate. We posit that the protection of indigenous cultural systems is vital and urgent to create more effective policies in such realms.
Asunto(s)
Conservación de los Recursos Naturales/estadística & datos numéricos , Ecología/educación , Bosques , Aculturación , Biodiversidad , Bolivia , Estudios Transversales , Ambiente , Composición Familiar , Humanos , Conocimiento , Análisis de Regresión , Análisis EspacialRESUMEN
Understanding how indigenous peoples' management practices relate to biological diversity requires addressing contemporary changes in indigenous peoples' way of life. This study explores the association between cultural change among a Bolivian Amazonian indigenous group, the Tsimane', and tree diversity in forests surrounding their villages. We interviewed 86 informants in six villages about their level of attachment to traditional Tsimane' values, our proxy for cultural change. We estimated tree diversity (Fisher's Alpha index) by inventorying trees in 48 0.1-ha plots in old-growth forests distributed in the territory of the same villages. We used multivariate models to assess the relation between cultural change and alpha tree diversity. Cultural change was associated with alpha tree diversity and the relation showed an inverted U-shape, thus suggesting that tree alpha diversity peaked in villages undergoing intermediate cultural change. Although the results do not allow for testing the direction of the relation, we propose that cultural change relates to tree diversity through the changes in practices and behaviors that affect the traditional ecological knowledge of Tsimane' communities; further research is needed to determine the causality. Our results also find support in the intermediate disturbance hypothesis, and suggest that indigenous management can be seen as an intermediate form of anthropogenic disturbance affecting forest communities in a subtle, non-destructive way.
RESUMEN
Researchers have argued that indigenous peoples preferably use the most apparent plant species, particularly for medicinal uses. However, the association between the ecological importance of a species and its usefulness remains unclear. In this paper we quantify such association for six use categories (firewood, construction, materials, food, medicines and other uses). We collected data on the uses of 58 tree species, as reported by 93 informants in 22 villages in the Tsimane' territory (Bolivian Amazon). We calculated the ecological importance of the same species by deriving their importance value index (IVI) in 48 0.1-ha old-growth forest plots. Matching both data sets, we found a positive relation between the IVI of a species and its overall use value (UV) as well as with its UV for construction and materials. We found a negative relation between IVI and UV for species that were reportedly used for medicine and food uses, and no clear pattern for the other categories. We hypothesize that species used for construction or crafting purposes because of their physical properties are more easily substitutable than species used for medicinal or edible purposes because of their chemical properties.