Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 54(2): 870-878, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31789027

RESUMEN

Compound-specific isotope analysis (CSIA) is a valuable tool in contaminant remediation studies. Chlorofluorocarbons (CFCs) are ozone-depleting substances previously thought to be persistent in groundwater under most geochemical conditions but more recently have been found to (bio)transform in some laboratory experiments. To date, limited applications of CSIA to CFCs have been undertaken. Here, biotransformation-associated carbon isotope enrichment factors, εC,bulk for CFC-113 (εC,bulk = -8.5 ± 0.4‰) and CFC-11 (εC,bulk = -14.5 ± 1.9‰), were determined. δ13C signatures of pure-phase CFCs and hydrochlorofluorocarbons were measured to establish source signatures. These findings were applied to investigate potential in situ CFC transformation in groundwater at a field site, where carbon isotope fractionation of CFC-11 suggests naturally occurring biotransformation by indigenous microorganisms. The maximum extent of CFC-11 transformation is estimated to be up to 86% by an approximate calculation using the Rayleigh concept. CFC-113 δ13C values in contrast were not resolvably different from pure-phase sources measured to date, demonstrating that CSIA can aid in identifying which compounds may, or may not, be undergoing reactive processes at field sites. Science and public attention remains focused on CFCs, as unexplained source inputs to the atmosphere have been recently reported, and the potential for CFC biotransformation in surface and groundwaters remains unclear. This study proposes δ13C CSIA as a novel application to study the fate of CFCs in groundwater.


Asunto(s)
Clorofluorocarburos , Agua Subterránea , Biodegradación Ambiental , Biotransformación , Isótopos de Carbono , Compuestos Orgánicos
2.
Water Res ; 149: 632-639, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30583106

RESUMEN

A key challenge in conceptual models for contaminated sites is identification of the multiplicity of processes controlling contaminant concentrations and distribution as well as quantification of the rates at which such processes occur. Conventional protocol for calculating biodegradation rates can lead to overestimation by attributing concentration decreases to degradation alone. This study reports a novel approach of assessing in situ biodegradation rates of monochlorobenzene (MCB) and benzene in contaminated sediments. Passive diffusion samplers allowing cm-scale vertical resolution across the sediment-water interface were coupled with measurements of concentrations and stable carbon isotope signatures to identify zones of active biodegradation of both compounds. Large isotopic enrichment trends in 13C were observed for MCB (1.9-5.7‰), with correlated isotopic depletion in 13C for benzene (1.0-7.0‰), consistent with expected isotope signatures for substrate and daughter product produced by in situ biodegradation. Importantly in the uppermost sediments, benzene too showed a pronounced 13C enrichment trend of up to 2.2‰, providing definitive evidence for simultaneous degradation as well as production of benzene. The hydrogeological concept of representative elementary volume was applied to CSIA data for the first time and identified a critical zone of 10-15 cm with highest biodegradation potential in the sediments. Using both stable isotope-derived rate calculations and numerical modeling, we show that MCB degraded at a slower rate (0.1-1.4 yr-1 and 0.2-3.2 yr-1, respectively) than benzene (3.3-84.0 yr-1) within the most biologically active zone of the sediment, contributing to detoxification.


Asunto(s)
Contaminantes Químicos del Agua , Benceno , Biodegradación Ambiental , Isótopos de Carbono
3.
Environ Sci Technol ; 50(22): 12197-12204, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27771950

RESUMEN

Monitoring natural recovery of contaminated sediments requires the use of techniques that can provide definitive evidence of in situ contaminant degradation. In this study, a passive diffusion sampler, called "peeper", was combined with Compound Specific Isotope Analysis to determine benzene and monochlorobenzene (MCB) stable carbon isotope values at a fine vertical resolution (3 cm) across the sediment water interface at a contaminated site. Results indicated significant decrease in concentrations of MCB from the bottom to the top layers of the sediment over 25 cm, and a 3.5 ‰ enrichment in δ13C values of MCB over that distance. Benzene was always at lower concentrations than MCB, with consistently more depleted δ13C values than MCB. The redox conditions were dominated by iron reduction along most of the sediment profile. These results provide multiple lines of evidence for in situ reductive dechlorination of MCB to benzene. Stable isotope analysis of contaminants in pore water is a valuable method to demonstrate in situ natural recovery of contaminated sediments. This novel high-resolution approach is critical to deciphering the combined effects of parent contaminant (e.g., MCB) degradation and both production and simultaneous degradation of daughter products, especially benzene.


Asunto(s)
Benceno , Isótopos de Carbono , Biodegradación Ambiental , Monitoreo del Ambiente , Halogenación , Contaminantes Químicos del Agua
4.
J Contam Hydrol ; 57(1-2): 61-80, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12143993

RESUMEN

Monitored natural attenuation (MNA) has recently emerged as a viable groundwater remediation technology in the United States. Area 6 at Dover Air Force Base (Dover, DE) was chosen as a test site to examine the potential for MNA of tetrachloroethene (PCE) and trichloroethene (TCE) in groundwater and aquifer sediments. A "lines of evidence" approach was used to document the occurrence of natural attenuation. Chlorinated hydrocarbon and biogeochemical data were used to develop a site-specific conceptual model where both anaerobic and aerobic biological processes are responsible for the destruction of PCE, TCE, and daughter metabolites. An examination of groundwater biogeochemical data showed a region of depleted dissolved oxygen with elevated dissolved methane and hydrogen concentrations. Reductive dechlorination likely dominated in the anaerobic portion of the aquifer where PCE and TCE levels were observed to decrease with a simultaneous increase in cis-1,2-dichloroethene (cis-DCE), vinyl chloride (VC), ethene, and dissolved chloride. Near the anaerobic/ aerobic interface, concentrations of cis-DCE and VC decreased to below detection limits, presumably due to aerobic biotransformation processes. Therefore, the contaminant and daughter product plumes present at the site appear to have been naturally atteuated by a combination of active anaerobic and aerobic biotransformation processes.


Asunto(s)
Compuestos de Cloro/química , Contaminantes del Suelo/análisis , Solventes/química , Contaminantes del Agua/análisis , Bacterias Aerobias , Bacterias Anaerobias , Compuestos de Cloro/análisis , Compuestos de Cloro/metabolismo , Delaware , Monitoreo del Ambiente , Fenómenos Geológicos , Geología , Hidrocarburos Clorados/análisis , Hidrocarburos Clorados/química , Hidrocarburos Clorados/metabolismo , Contaminantes del Suelo/metabolismo , Solventes/análisis , Solventes/metabolismo , Contaminantes del Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA