Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Space Sci Rev ; 2142018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30613113

RESUMEN

The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument onboard the Rosetta spacecraft has measured molecular oxygen (O2) in the coma of comet 67P/Churyumov-Gerasimenko (67P/C-G) in surprisingly high abundances. These measurements mark the first unequivocal detection of O2 in a cometary environment. The large relative abundance of O2 in 67P/C-G despite its high reactivity and low interstellar abundance poses a puzzle for its origin in comet 67P/C-G, and potentially other comets. Since its detection, there have been a number of hypotheses put forward to explain the production and origin of O2 in the comet. These hypotheses cover a wide range of possibilities from various in situ production mechanisms to protosolar nebula and primordial origins. Here, we review the O2 formation mechanisms from the literature, and provide a comprehensive summary of the current state of knowledge of the sources and origin of cometary O2.

2.
Mon Not R Astron Soc ; 472(1): 118-128, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31105342

RESUMEN

We have converted our Titan one-dimensional photochemical model to simulate the photo- chemistry of Pluto's atmosphere and include condensation and aerosol trapping in the model. We find that condensation and aerosol trapping are important processes in producing the HCN altitude profile observed by the Atacama Large Millimeter Array (ALMA). The nitrogen iso- tope chemistry in Pluto's atmosphere does not appear to significantly fractionate the isotope ratio between N2 and HCN as occurs at Titan. However, our simulations only cover a brief period of time in a Pluto year, and thus only a brief portion of the solar forcing conditions that Pluto's atmosphere experiences. More work is needed to evaluate photochemical fractionation over a Pluto year. Condensation and aerosol trapping appear to have a major impact on the altitude profile of the isotope ratio in HCN. Since ALMA did not detect HC15N in Pluto's atmosphere, we conclude that condensation and aerosol trapping must be much more efficient for HC15N compared to HC14N. The large uncertainty in photochemical fractionation makes it difficult to use any potential current measurement of 14N/15N in N2 to determine the origin of Pluto's nitrogen. More work is needed to understand photochemical fractionation and to evaluate how condensation, sublimation and aerosol trapping will fractionate N2 and HCN.

3.
Mon Not R Astron Soc ; 472(1): 104-117, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31359891

RESUMEN

In light of the recent New Horizons flyby measurements, we present a coupled ion-neutral-photochemistry model developed for simulating the atmosphere of Pluto. Our model results closely match the observed density profiles of CH4, N2 and the C2 hydrocarbons in the altitude range where available New Horizons measurements are most accurate (above ~ 100-200 km). We found a high eddy coefficient of 106 cm2 s-1 from the surface to an altitude of 150 km, and 3 × 106 cm2 s-1 above 150 km for Pluto's atmosphere. Our results demonstrate that C2 hydrocarbons must stick to and be removed by aerosol particles in order to reproduce the C2 profiles observed by New Horizons. Incorporation into aerosols in Pluto's atmosphere is a significantly more effective process than condensation, and we found that condensation alone cannot account for the observed shape of the vertical profiles. We empirically determined the sticking efficiency of C2 hydrocarbons to aerosol particles as a function of altitude, and found that the sticking efficiency of C2 hydrocarbons is inversely related to the aerosol surface area. Aerosols must harden and become less sticky as they age in Pluto's atmosphere. Such hardening with ageing is both necessary and sufficient to explain the vertical profiles of C2 hydrocarbons in Pluto's atmosphere. This result is in agreement with the fundamental idea of aerosols hardening as they age, as proposed for Titan's aerosols.

4.
Sci Adv ; 2(4): e1501781, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27152351

RESUMEN

Cometary nuclei are considered to most closely reflect the composition of the building blocks of our solar system. As such, comets carry important information about the prevalent conditions in the solar nebula before and after planet formation. Recent measurements of the time variation of major and minor volatile species in the coma of the Jupiter family comet 67P/Churyumov-Gerasimenko (67P) by the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instrument onboard Rosetta provide insight into the possible origin of this comet. The observed outgassing pattern indicates that the nucleus of 67P contains crystalline ice, clathrates, and other ices. The observed outgassing is not consistent with gas release from an amorphous ice phase with trapped volatile gases. If the building blocks of 67P were formed from crystalline ices and clathrates, then 67P would have agglomerated from ices that were condensed and altered in the protosolar nebula closer to the Sun instead of more pristine ices originating from the interstellar medium or the outskirts of the disc, where amorphous ice may dominate.


Asunto(s)
Hielo/análisis , Planetas , Sistema Solar , Terpenos/aislamiento & purificación , Medio Ambiente Extraterrestre , Meteoroides , Terpenos/química
5.
Planet Space Sci ; 130: 104-109, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31068733

RESUMEN

The origin and evolution of nitrogen in solar system bodies is an important question for understanding processes that took place during the formation of the planets and solar system bodies. Pluto has an atmosphere that is 99% molecular nitrogen, but it is unclear if this nitrogen is primordial or derived from ammonia in the protosolar nebula. The nitrogen isotope ratio is an important tracer of the origin of nitrogen on solar system bodies, and can be used at Pluto to determine the origin of its nitrogen. After evaluating the potential impact of escape and photochemistry on Pluto's nitrogen isotope ratio (14N/15N), we find that if Pluto's nitrogen originated as N2 the current ratio in Pluto's atmosphere would be greater than 324 while it would be less than 157 if the source of Pluto's nitrogen were NH3. The New Horizons spacecraft successfully visited the Pluto system in July 2015 providing a potential opportunity to measure 14N/15N in N2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA