Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Express ; 31(23): 38610-38624, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-38017962

RESUMEN

Optically Variable Devices (OVDs) are widely used as security features in anti-counterfeiting efforts. OVDs enable the display of color dynamic effects that are easily interpreted by the user. However, obtaining these elements over large areas poses certain challenges in terms of efficiency. The paper presents a modified approach for manufacturing plasmonic type OVDs through dot-matrix technology, which is a standard origination step of security holograms. By adjusting the spatial filters in the optical scheme, it is possible to double the resolution of the recorded quasi-sinusoidal diffraction gratings. The experiments confirm the creation of diffraction gratings with frequencies from 1600 to 3500 lines per mm, which facilitates the production of plasmonic zero-order spectral filters. The paper shows how the transmission characteristics of the studied elements are affected by the geometric parameters of the diffraction grating, silver layer thickness, angle of incidence, and polarization of light. The results have shown that using the proposed method it is possible to obtain 1D or 2D structural color OVD-image on a large area - several square centimeters and more. High speed recording of such elements is provided: the exposure time was from 120 to 400 ms depending on the grating resolution for a 0.05 mm2 frame, the total printing time for the size of the 25×25 mm2 OVD was about 2.5 hours for a 1D element, and less than 3.5 hours for a 2D element. Thus, the proposed method and the OVD elements produced by it can be useful to designers of optical security elements as a simpler and faster alternative to electron-beam lithographic technologies.

2.
Appl Opt ; 51(22): 5477-85, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22859038

RESUMEN

A compact Raman lidar system for remote sensing of sea and drifting ice was developed at the Wave Research Center at the Prokhorov General Physics Institute of the Russian Academy of Sciences. The developed system is based on a diode-pumped solid-state YVO(4):Nd laser combined with a compact spectrograph equipped with a gated detector. The system exhibits high sensitivity and can be used for mapping or depth profiling of different parameters within many oceanographic problems. Light weight (∼20 kg) and low power consumption (300 W) make it possible to install the device on any vehicle, including unmanned aircraft or submarine systems. The Raman lidar presented was used for study and analysis of the different influence of the open sea and glaciers on water properties in Svalbard fjords. Temperature, phytoplankton, and dissolved organic matter distributions in the seawater were studied in the Ice Fjord, Van Mijen Fjord, and Rinders Fjord. Drifting ice and seawater in the Rinders Fjord were characterized by the Raman spectroscopy and fluorescence. It was found that the Paula Glacier strongly influences the water temperature and chlorophyll distributions in the Van Mijen Fjord and Rinders Fjord. Possible applications of compact lidar systems for express monitoring of seawater in places with high concentrations of floating ice or near cold streams in the Arctic Ocean are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA