Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Cell Biochem Funct ; 42(7): e4118, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39267363

RESUMEN

Low back pain significantly impacts individuals' quality of life, with intervertebral disc degeneration (IDD) being a primary contributor to this condition. Currently, IDD treatment primarily focuses on symptom management and does not achieve a definitive cure. The cartilage endplate (CEP), a crucial nutrient-supplying tissue of the intervertebral disc, plays a pivotal role in disc degeneration. This review examines the mechanisms underlying CEP degeneration, summarizing recent advancements in understanding the structure and function of CEP, the involvement of various signaling pathways, and the roles of cartilage endplate stem cells (CESCs) and exosomes (Exos) in this process. The aim of this review is to provide a comprehensive reference for future research on CEP. Despite progress in understanding the role of CEP in IDD, the mechanisms underlying CEP degeneration remain incompletely elucidated. Future research poses significant challenges, necessitating further investigations to elucidate the complexities of CEP.


Asunto(s)
Cartílago , Degeneración del Disco Intervertebral , Degeneración del Disco Intervertebral/patología , Degeneración del Disco Intervertebral/metabolismo , Humanos , Cartílago/metabolismo , Cartílago/patología , Animales , Disco Intervertebral/patología , Disco Intervertebral/metabolismo , Exosomas/metabolismo , Células Madre/metabolismo , Células Madre/citología , Células Madre/patología , Transducción de Señal
2.
Nat Commun ; 15(1): 7993, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266583

RESUMEN

Electroceuticals, through the selective modulation of peripheral nerves near target organs, are promising for treating refractory diseases. However, the small sizes and the delicate nature of these nerves present challenges in simplifying the fixation and stabilizing the electrical-coupling interface for neural electrodes. Herein, we construct a robust neural interface for fine peripheral nerves using an injectable bio-adhesive hydrogel bioelectronics. By incorporating a multifunctional molecular regulator during network formation, we optimize the injectability and conductivity of the hydrogel through fine-tuning reaction kinetics and multi-scale interactions within the conductive network. Meanwhile, the mechanical and electrical stability of the hydrogel is achieved without compromising its injectability. Minimal tissue damage along with low and stable impedance of the injectable neural interface enables chronic vagus neuromodulation for myocardial infarction therapy in the male rat model. Our highly-stable, injectable, conductive hydrogel bioelectronics are readily available to target challenging anatomical locations, paving the way for future precision bioelectronic medicine.


Asunto(s)
Conductividad Eléctrica , Hidrogeles , Animales , Masculino , Hidrogeles/química , Ratas , Ratas Sprague-Dawley , Infarto del Miocardio/terapia , Inyecciones , Modelos Animales de Enfermedad , Nervio Vago/fisiología , Estimulación del Nervio Vago/métodos , Estimulación del Nervio Vago/instrumentación , Nervios Periféricos/fisiología
3.
World Neurosurg ; 191: 39-48, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111654

RESUMEN

OBJECTIVE: This systematic review and meta-analysis of randomized controlled trials and retrospective controlled studies aims to evaluate the efficacy and safety of high-dose tranexamic acid (TXA) in spinal correction surgery for adolescent idiopathic scoliosis patients. METHODS: In March 2024, a comprehensive search was conducted in PubMed, Web of Science, Embase, and Cochrane databases to identify randomized controlled trials and retrospective controlled studies comparing the effects of high-dose TXA on blood loss and transfusion requirements during spinal correction surgery. RESULTS: This meta-analysis included 10 studies encompassing a total of 741 patients. The pooled results indicated that the use of high-dose TXA significantly reduced intraoperative blood loss [weighted mean difference (WMD) = -519.83, 95% CI (-724.74, -314.92), P < 0.00001], transfusion rate [RR = 0.28, 95% CI (0.17, 0.45), P < 0.00001], total blood loss [WMD = -891.09, 95% CI (-1623.92, -158.26), P = 0.02], and postoperative blood loss [WMD = -105.91, 95% CI (-141.29, -70.52), P < 0.00001]. There was no significant difference in operative time [WMD = -18.96, 95% CI (-40.20, 2.28), P = 0.08] and blood loss per segment [WMD = -50.51, 95% CI (-102.19, 1.17), P = 0.06]. Both groups had a comparable incidence of thromboembolic events. CONCLUSIONS: Our meta-analysis suggests that the use of high-dose TXA reduces intraoperative blood loss, transfusion rate, total blood loss, and postoperative blood loss in spinal correction surgery for adolescent idiopathic scoliosis patients. However, there were no significant differences in operative time and blood loss per segment.

4.
Transpl Immunol ; 86: 102083, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38996984

RESUMEN

BACKGROUND: Facet joint osteoarthritis (FJOA) is a common lumbar osteoarthritis characterized by degeneration of small joint cartilage. Bushen Huoxue decotion (BSHXD) has good therapeutic effects on OA. Our work aimed to further probe the pharmacological effects of BSHXD-containing serum (BSHXD-CS) on FJOA and define underlying the mechanisms invovled. METHODS: To establish a FJOA cell model, primary rat chondrocytes were treated with LPS. The mRNA and protein expressions were assessed using qRT-PCR and western blot, respectively. The secretion levels of pro-inflammatory cytokines were measured by ELISA. Cell viability was determined by CCK8 assay. The global m6A level was detected by the kit, and NLRP3 mRNA m6A level was determined by Me-RIP assay. The molecular interactions were analyzed by RIP and RNA pull-down assays. RESULTS: BSHXD-CS treatment relieved LPS-induced cell injury, inflammation, NLRP3 inflammasome and pyroptosis in chondrocytes (all p < 0.05). LPS-induced NLRP3 upregulation in chondrocytes was related to its high m6A modification level (p < 0.05). It was also observed that BSHXD-CS reduced LPS-induced m6A modification in chondrocytes via repressing STAT3 (all p < 0.05), suggesting BSHXD-CS could repress NLRP3 expression via m6A-dependent manner. Moreover, DAA, a m6A specific inhibitor, was proved to strengthen the protectively roles of BSHXD-CS on LPS-challenged pytoptosis (all p < 0.05). CONCLUSION: BSHXD-CS inhibited NLRP3 inflammasome activation and pyroptosis in chondrocytes to repress OA progression by reducing RNA m6A modification.


Asunto(s)
Condrocitos , Medicamentos Herbarios Chinos , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Articulación Cigapofisaria , Animales , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Condrocitos/patología , Piroptosis/efectos de los fármacos , Ratas , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Articulación Cigapofisaria/patología , Células Cultivadas , Ratas Sprague-Dawley , Osteoartritis/patología , Masculino , Modelos Animales de Enfermedad , Suero , Inflamasomas/metabolismo , Humanos , Adenosina/análogos & derivados , Adenosina/farmacología
5.
Research (Wash D C) ; 7: 0403, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966749

RESUMEN

Islet transplantation has now become a promising treatment for insulin-deficient diabetes mellitus. Compared to traditional diabetes treatments, cell therapy can restore endogenous insulin supplementation, but its large-scale clinical application is impeded by donor shortages, immune rejection, and unsuitable transplantation sites. To overcome these challenges, an increasing number of studies have attempted to transplant hydrogel-encapsulated islet cells to treat diabetes. This review mainly focuses on the strategy of hydrogel-encapsulated pancreatic islet cells for diabetic cell therapy, including different cell sources encapsulated in hydrogels, encapsulation methods, hydrogel types, and a series of accessorial manners to improve transplantation outcomes. In addition, the formation and application challenges as well as prospects are also presented.

6.
Cell Biochem Biophys ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060915

RESUMEN

Long non-coding RNAs (lncRNAs), although incapable of encoding proteins, play crucial roles in multiple layers of gene expression regulation, epigenetic modifications, and post-transcriptional regulation. Zinc finger antisense 1 (ZFAS1), a lncRNA located in the 20q13 region of the human genome, exhibits dual functions as an oncogene or tumor suppressor in various human malignancies. ZFAS1 plays a crucial role in cancer progression, metastasis, invasion, apoptosis, cell cycle regulation, and drug resistance through complex molecular mechanisms. Additionally, ZFAS1 has a long half-life of over 16 h, demonstrating exceptional stability, and making it a potential biomarker. This review integrates recent studies on the role and molecular mechanisms of ZFAS1 in malignancies and summarizes its clinical significance. By summarizing the role of ZFAS1 in cancer, we aim to highlight its potential as an anti-cancer biomarker and therapeutic target.

7.
J Nanobiotechnology ; 22(1): 410, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992774

RESUMEN

Recapitulating the natural extracellular physical microenvironment has emerged as a promising method for tissue regeneration, as multiple physical interventions, including ultrasound, thermal and electrical therapy, have shown great potential. However, simultaneous coupling of multiple physical cues to highly bio-mimick natural characteristics for improved tissue regeneration still remains formidable. Coupling of intrinsic electrical and mechanical cues has been regarded as an effective way to modulate tissue repair. Nevertheless, precise and convenient manipulation on coupling of mechano-electrical signals within extracellular environment to facilitate tissue regeneration remains challengeable. Herein, a photothermal-sensitive piezoelectric membrane was designed for simultaneous integration of electrical and mechanical signals in response to NIR irradiation. The high-performance mechano-electrical coupling under NIR exposure synergistically triggered the promotion of osteogenic differentiation of stem cells and enhances bone defect regeneration by increasing cellular mechanical sensing, attachment, spreading and cytoskeleton remodeling. This study highlights the coupling of mechanical signals and electrical cues for modulation of osteogenesis, and sheds light on alternative bone tissue engineering therapies with multiple integrated physical cues for tissue repair.


Asunto(s)
Regeneración Ósea , Diferenciación Celular , Osteogénesis , Animales , Ratones , Ingeniería de Tejidos/métodos , Células Madre Mesenquimatosas/citología , Humanos
8.
Mol Med Rep ; 30(3)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38994759

RESUMEN

Spinal diseases, including intervertebral disc degeneration (IDD), ankylosing spondylitis, spinal cord injury and other non­infectious spinal diseases, severely affect the quality of life of patients. Current treatments for IDD and other spinal diseases can only relieve symptoms and do not completely cure the disease. Therefore, there is an urgent need to explore the causes of these diseases and develop new treatment approaches. Long non­coding RNA (lncRNA), a form of non­coding RNA, is abundant in diverse sources, has numerous functions, and plays an important role in the occurrence and development of spinal diseases such as IDD. However, the mechanism of action of lncRNAs has not been fully elucidated, and significant challenges remain in the use of lncRNAs as new therapeutic targets. The present article reviews the sources, classification and functions of lncRNAs, and introduces the role of lncRNAs in spinal diseases, such as IDD, and their therapeutic potential.


Asunto(s)
ARN Largo no Codificante , Enfermedades de la Columna Vertebral , ARN Largo no Codificante/genética , Humanos , Enfermedades de la Columna Vertebral/genética , Enfermedades de la Columna Vertebral/terapia , Espondilitis Anquilosante/genética , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/terapia , Animales , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/metabolismo , Regulación de la Expresión Génica
9.
Front Pharmacol ; 15: 1337179, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974037

RESUMEN

Background: The effectiveness and safety of using Brucea javanica oil (BJO) in combination with Transarterial Chemoembolization (TACE) for liver cancer treatment are subjects of debate. This study aims to assess the comparative effectiveness and safety of BJO-assisted TACE versus TACE alone and quantifies the differences between these two treatment methods. Methods: A systematic search was conducted in multiple databases including PubMed, Cochrane, CNKI, and Wanfang, until 1 July 2023. Meta-analysis was conducted, and the results were presented as mean difference (MD), risk ratio (RR), and 95% confidence intervals (CI). Results: The search yielded 11 RCTs, with a combined sample size of 1054 patients. Meta-analysis revealed that BJO-assisted TACE exhibited superior outcomes compared to standalone TACE. Specific data revealed that BJO-assisted TACE improves clinical benefit rate by 22% [RR = 1.22, 95% CI (1.15, 1.30)], increases the number of people with improved quality of life by 32%, resulting in an average score improvement of 9.53 points [RR = 1.32, 95% CI (1.22, 1.43); MD = 9.53, 95% CI (6.95, 12.10)]. Furthermore, AFP improvement rate improved significantly by approximately 134% [RR = 2.34, 95% CI (1.58, 3.46)], accompanied by notable improvements in liver function indicators, with an average reduction of 27.19 U/L in AST [MD = -27.19, 95% CI (-40.36, -14.02)], 20.77 U/L in ALT [MD = -20.77, 95% CI (-39.46, -2.08)], 12.17 µmol/L in TBIL [MD = -12.17, 95% CI (-19.38, -4.97)], and a decrease of 43.72 pg/mL in VEGF [MD = -43.72, 95% CI (-63.29, -24.15)]. Most importantly, there was a 29% reduction in the occurrence of adverse reactions [RR = 0.71, 95% CI (0.60, 0.84)]. Conclusion: These findings indicate that BJO-assisted TACE may be considered as a potentially beneficial treatment option for liver cancer patients when compared to standalone TACE. It appears to contribute to improved treatment outcomes, enhanced quality of life, and potentially reduced adverse reactions, suggesting it warrants further investigation as a promising approach for liver cancer treatment. Systematic Review Registration: identifier CRD42023428948.

11.
J Nanobiotechnology ; 22(1): 378, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943185

RESUMEN

Tissue engineered heart valves (TEHVs) demonstrates the potential for tissue growth and remodel, offering particular benefit for pediatric patients. A significant challenge in designing functional TEHV lies in replicating the anisotropic mechanical properties of native valve leaflets. To establish a biomimetic TEHV model, we employed melt-electrowriting (MEW) technology to fabricate an anisotropic PCL scaffold. By integrating the anisotropic MEW-PCL scaffold with bioactive hydrogels (GelMA/ChsMA), we successfully crafted an elastic scaffold with tunable mechanical properties closely mirroring the structure and mechanical characteristics of natural heart valves. This scaffold not only supports the growth of valvular interstitial cells (VICs) within a 3D culture but also fosters the remodeling of extracellular matrix of VICs. The in vitro experiments demonstrated that the introduction of ChsMA improved the hemocompatibility and endothelialization of TEHV scaffold. The in vivo experiments revealed that, compared to their non-hydrogel counterparts, the PCL-GelMA/ChsMA scaffold, when implanted into SD rats, significantly suppressed immune reactions and calcification. In comparison with the PCL scaffold, the PCL-GelMA/ChsMA scaffold exhibited higher bioactivity and superior biocompatibility. The amalgamation of MEW technology and biomimetic design approaches provides a new paradigm for manufacturing scaffolds with highly controllable microstructures, biocompatibility, and anisotropic mechanical properties required for the fabrication of TEHVs.


Asunto(s)
Válvulas Cardíacas , Hidrogeles , Ratas Sprague-Dawley , Ingeniería de Tejidos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Animales , Andamios del Tejido/química , Anisotropía , Ratas , Hidrogeles/química , Materiales Biocompatibles/química , Prótesis Valvulares Cardíacas , Poliésteres/química , Células Cultivadas , Humanos , Matriz Extracelular/química , Masculino
12.
ACS Nano ; 18(27): 17378-17406, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38916747

RESUMEN

Liver diseases have consistently posed substantial challenges to global health. It is crucial to find innovative methods to effectively prevent and treat these diseases. In recent times, there has been an increasing interest in the use of mRNA formulations that accumulate in liver tissue for the treatment of hepatic diseases. In this review, we start by providing a detailed introduction to the mRNA technology. Afterward, we highlight types of liver diseases, discussing their causes, risks, and common therapeutic strategies. Additionally, we summarize the latest advancements in mRNA technology for the treatment of liver diseases. This includes systems based on hepatocyte growth factor, hepatitis B virus antibody, left-right determination factor 1, human hepatocyte nuclear factor α, interleukin-12, methylmalonyl-coenzyme A mutase, etc. Lastly, we provide an outlook on the potential of mRNA technology for the treatment of liver diseases, while also highlighting the various technical challenges that need to be addressed. Despite these difficulties, mRNA-based therapeutic strategies may change traditional treatment methods, bringing hope to patients with liver diseases.


Asunto(s)
Hepatopatías , ARN Mensajero , Humanos , ARN Mensajero/genética , Hepatopatías/terapia , Hepatopatías/genética , Animales , Terapia Genética/métodos
13.
J Nanobiotechnology ; 22(1): 250, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750519

RESUMEN

The complexity of repairing large segment defects and eradicating residual tumor cell puts the osteosarcoma clinical management challenging. Current biomaterial design often overlooks the crucial role of precisely regulating innervation in bone regeneration. Here, we develop a Germanium Selenium (GeSe) co-doped polylactic acid (PLA) nanofiber membrane-coated tricalcium phosphate bioceramic scaffold (TCP-PLA/GeSe) that mimics the bone-periosteum structure. This biomimetic scaffold offers a dual functionality, combining piezoelectric and photothermal conversion capabilities while remaining biodegradable. When subjected to ultrasound irradiation, the US-electric stimulation of TCP-PLA/GeSe enables spatiotemporal control of neurogenic differentiation. This feature supports early innervation during bone formation, promoting early neurogenic differentiation of Schwann cells (SCs) by increasing intracellular Ca2+ and subsequently activating the PI3K-Akt and Ras signaling pathways. The biomimetic scaffold also demonstrates exceptional osteogenic differentiation potential under ultrasound irradiation. In rabbit model of large segment bone defects, the TCP-PLA/GeSe demonstrates promoted osteogenesis and nerve fibre ingrowth. The combined attributes of high photothermal conversion capacity and the sustained release of anti-tumor selenium from the TCP-PLA/GeSe enable the synergistic eradication of osteosarcoma both in vitro and in vivo. This strategy provides new insights on designing advanced biomaterials of repairing large segment bone defect and osteosarcoma.


Asunto(s)
Regeneración Ósea , Fosfatos de Calcio , Osteogénesis , Osteosarcoma , Andamios del Tejido , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Animales , Regeneración Ósea/efectos de los fármacos , Andamios del Tejido/química , Conejos , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Osteogénesis/efectos de los fármacos , Poliésteres/química , Humanos , Diferenciación Celular/efectos de los fármacos , Neoplasias Óseas/patología , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/terapia , Línea Celular Tumoral , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Células de Schwann/efectos de los fármacos , Nanofibras/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Selenio/química , Selenio/farmacología
14.
Medicine (Baltimore) ; 103(14): e37684, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38579032

RESUMEN

BACKGROUND: Wrist arthroscopy technology is a surgical technology invented in recent years and widely used in clinical treatment of various wrist diseases. This study uses the methods of bibliometrics and visual analysis to understand the global research status, research hotspots, and future development trends of wrist arthroscopy. METHODS: The relevant literature of global publications on wrist arthroscopy from 2013 to 2023 was extracted from the Web of Science Core Collection database, and the annual output, cooperation, hot spots, research status, and development trend of this field were analyzed by using the bibliometric software (VOSviewers, CiteSpace, and the R package "Bibliometrix"). RESULTS: A total of 635 articles were included, from 2013 to 2023, the number of publications related to wrist arthroscopy showed an overall upward trend, the USA, France, and China are the top 3 countries in terms of the number of publications, whereas Mayo Clinic is the institution with the highest number of publications, Ho PC holds a core position in this field, keyword analysis indicates that the research hotspots are the applications of wrist arthroscopy in triangular fibrocartilage complex injuries, scaphoid nonunion, and avascular necrosis of the lunate. CONCLUSION SUBSECTIONS: Wrist arthroscopy has shown tremendous potential in treating various wrist diseases. However, there are still some challenges in its research domain. With continuous deep research, strengthened international collaboration, and ongoing technological advancements, wrist arthroscopy has the potential to become the standard treatment in hand surgery, offering more efficient and safer treatment options for patients worldwide.


Asunto(s)
Artroscopía , Muñeca , Humanos , Instituciones de Atención Ambulatoria , Bibliometría , China
15.
BMC Urol ; 24(1): 99, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38685008

RESUMEN

OBJECTIVE: To evaluate the efficacy of urethral-sparing laparoscopic simple prostatectomy (US-LSP) for the treatment of large-volume (>80 ml) benign prostatic hyperplasia (BPH) with asymptomatic urethral stricture (urethral lumen > 16 Fr) after urethral stricture surgery. METHODS: We retrospectively analyzed clinical data of 39 large-volume BPH patients with asymptomatic urethral stricture after urethral stricture surgery who underwent US-LSP from January 2016 to October 2021. Postoperative follow-ups were scheduled at 1, 3, and 6 months. RESULTS: All patients affected by significant BPH-related lower urinary tract symptoms (LUTS) including 22 cases with asymptomatic anterior urethral stricture and 17 cases with asymptomatic posterior urethral stricture. Median operative time was 118 min (interquartile range [IQR]100-145). Median estimated blood loss was 224 ml (IQR: 190-255). 33 patients(84.6%) avoided continuous bladder irrigation. Postoperative complications occurred in 5 patients (12.8%), including 4 cases with Clavien-Dindo grade 1 and grade 2 and 1 case with grade 3a. During follow-up, US-LSP presented statistically significant improvements in LUTS compared to baseline (P < 0.05). A total of 25 patients had normal ejaculation preoperatively and 3 patients (12%) complained retrograde ejaculation postoperatively. Two patients (5.1%) reported stress urinary incontinence (SUI) and no patient reported aggravated urethral stricture during follow-up. CONCLUSIONS: US-LSP was safe and effective in treating large-volume BPH with asymptomatic urethral stricture after urethral stricture surgery. Meanwhile, US-LSP could reduce the risk of SUI in patients with asymptomatic posterior urethral stricture and maintain ejaculatory function in a high percentage of patients.


Asunto(s)
Laparoscopía , Prostatectomía , Hiperplasia Prostática , Estrechez Uretral , Humanos , Masculino , Hiperplasia Prostática/cirugía , Hiperplasia Prostática/complicaciones , Estudios Retrospectivos , Estrechez Uretral/etiología , Estrechez Uretral/cirugía , Anciano , Prostatectomía/métodos , Prostatectomía/efectos adversos , Tratamientos Conservadores del Órgano/métodos , Persona de Mediana Edad , Enfermedades Asintomáticas , Uretra/cirugía , Resultado del Tratamiento , Complicaciones Posoperatorias/etiología
16.
Artículo en Inglés | MEDLINE | ID: mdl-38616703

RESUMEN

Na3V2(PO4)2F3 (NVPF) has been regarded as a favorable cathode for sodium-ion batteries (SIBs) due to its high voltage and stable structure. However, the limited electronic conductivity restricts its rate performance. NVPF@reduced graphene oxide (rGO) was synthesized by a facile microwave-assisted hydrothermal approach with subsequent calcination to shorten the hydrothermal time. NVPF nanocuboids with sizes of 50-150 nm distributed on rGO can be obtained, delivering excellent electrochemical performance such as a longevity life (a high capacity retention of 85.6% after 7000 cycles at 10 C) and distinguished rate capability (116 mAh g-1 at 50 C with a short discharging/charging time of 1.2 min). The full battery with a Cu2Se anode represents a capacity of 116 mAh g-1 at 0.2 A g-1. The introduction of rGO can augment the electronic conductivity and advance the Na+ diffusion speed, boosting the cycling and rate capability. Besides, the small lattice change (3.3%) and high structural reversibility during the phase transition process between Na3V2(PO4)2F3 and NaV2(PO4)2F3 testified by in situ X-ray diffraction are also advantageous for Na storage behavior. This work furnishes a simple method to synthesize polyanionic cathodes with ultrahigh rate and ultralong lifespan for fast-charging SIBs.

17.
Front Cell Infect Microbiol ; 14: 1371591, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638831

RESUMEN

Background: Previous studies have suggested a link between gut microbiota and skin diseases, including erysipelas, an inflammatory skin condition. Despite this, the precise nature of the relationship between erysipelas and gut microbiota remains unclear and subject to debate. Methods: We conducted a Mendelian Randomization (MR) analysis using publicly available summary data from genome-wide association studies (GWAS) to explore the potential causal relationship between gut microbiota and erysipelas. Instrumental variables (IVs) were identified using a comprehensive set of screening methods. We then performed MR analyses primarily using the Inverse Variance Weighted (IVW) method, complemented by alternative approaches such as MR Egger, weighted median, simple mode, and weighted mode. A series of sensitivity analyses, including Cochran's Q test, MR-Egger intercept test, Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO) test, and a leave-one-out test, were executed to ensure the robustness and validity of our findings. Results: We identified potential associations between erysipelas and various gut microbiota, including Alcaligenaceae (OR 1.23; 95% CI 1.06-1.43; p=0.006), Rikenellaceae (OR 0.77; 95% CI 0.67-0.90; p=0.001), and others. Notably, associations with Actinomyces, Lachnospiraceae NC2004 group, Ruminiclostridium 9, Ruminococcaceae UCG014, Odoribacter, and Actinobacteria were also observed. Sensitivity analyses confirmed the robustness of these associations. Conclusion: Our MR analysis suggests both potentially beneficial and harmful causal relationships between various gut microbiota and the incidence of erysipelas. This study provides new theoretical and empirical insights into the pathogenesis of erysipelas and underscores the potential for innovative preventive and therapeutic approaches.


Asunto(s)
Erisipela , Microbioma Gastrointestinal , Humanos , Erisipela/genética , Análisis de la Aleatorización Mendeliana , Microbioma Gastrointestinal/genética , Estudio de Asociación del Genoma Completo , Piel , Bacteroidetes , Clostridiales
18.
Adv Sci (Weinh) ; 11(22): e2400189, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38520728

RESUMEN

Anticoagulation is vital to maintain blood fluidic status and physiological functions in the field of clinical blood-related procedures. Here, novel biomimetic anticoagulated porous inverse opal hydrogel particles is presented as anticoagulant bearing dynamic screening capability. The inverse opal hydrogel particles possess abundant sulfonic and carboxyl groups, which serve as binding sites with multiple coagulation factors and inhibit the blood coagulation process. Owing to the variations of refractive index and pore sizes during the binding process, the particles appeared corresponding structure color variations, which can be adopted as sensory index of anticoagulation. Based on these features, a sensor containing these diverse structure color particle units is constructed for pattern recognition of coagulation factors level in clinical plasma samples. By analyzing the sensory information of the unit, the colorimetric "fingerprint" for each target can be obtained and summarized as a database. Besides, a portable test-strip integrating sensory units is developed to distinguish the sample regarding abnormal coagulation factors-derived diseases via multivariate data analysis. It is believed that such biomimetic anticoagulated structural color particles and their derived sensor will open new avenue for clinical detection and disease diagnosis.


Asunto(s)
Anticoagulantes , Colorimetría , Humanos , Anticoagulantes/química , Colorimetría/métodos , Porosidad , Coagulación Sanguínea/efectos de los fármacos , Coagulación Sanguínea/fisiología , Biomimética/métodos , Color , Hidrogeles/química
19.
Front Pharmacol ; 15: 1353615, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464719

RESUMEN

Gouty arthritis (GA) is an inflammatory disease characterized by pain. The primary goal of current treatment strategies during GA flares remains the reduction of inflammation and pain. Research suggests that the gut microbiota and microbial metabolites contribute to the modulation of the inflammatory mechanism associated with GA, particularly through their effect on macrophage polarization. The increasing understanding of the gut-joint axis emphasizes the importance of this interaction. The primary objective of this review is to summarize existing research on the gut-immune-joint axis in GA, aiming to enhance understanding of the intricate processes and pathogenic pathways associated with pain and inflammation in GA, as documented in the published literature. The refined comprehension of the gut-joint axis may potentially contribute to the future development of analgesic drugs targeting gut microbes for GA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA