Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 7: 10412, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26786190

RESUMEN

Chloride intracellular channel 4 (CLIC4) is a mammalian homologue of EXC-4 whose mutation is associated with cystic excretory canals in nematodes. Here we show that CLIC4-null mouse embryos exhibit impaired renal tubulogenesis. In both developing and developed kidneys, CLIC4 is specifically enriched in the proximal tubule epithelial cells, in which CLIC4 is important for luminal delivery, microvillus morphogenesis, and endolysosomal biogenesis. Adult CLIC4-null proximal tubules display aberrant dilation. In MDCK 3D cultures, CLIC4 is expressed on early endosome, recycling endosome and apical transport carriers before reaching its steady-state apical membrane localization in mature lumen. CLIC4 suppression causes impaired apical vesicle coalescence and central lumen formation, a phenotype that can be rescued by Rab8 and Cdc42. Furthermore, we show that retromer- and branched actin-mediated trafficking on early endosome regulates apical delivery during early luminogenesis. CLIC4 selectively modulates retromer-mediated apical transport by negatively regulating the formation of branched actin on early endosomes.


Asunto(s)
Actinas/metabolismo , Canales de Cloruro/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Canales de Cloruro/genética , Perros , Endosomas/metabolismo , Exocitosis/genética , Exocitosis/fisiología , Inmunoprecipitación , Células de Riñón Canino Madin Darby , Ratones , Ratones Noqueados , Proteínas Mitocondriales/genética , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología
2.
PLoS One ; 4(10): e7330, 2009 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-19802394

RESUMEN

Navigation of cell locomotion by gradients of soluble factors can be desensitized if the concentration of the chemo-attractant stays unchanged. It remains obscure if the guidance by immobilized extracellular matrix (ECM) as the substrate is also adaptive and if so, how can the desensitized ECM guidance be resensitized. When first interacting with a substrate containing micron-scale fibronectin (FBN) trails, highly motile fish keratocytes selectively adhere and migrate along the FBN paths. However, such guided motion become adaptive after about 10 min and the cells start to migrate out of the ECM trails. We found that a burst increase of intracellular calcium created by an uncaging technique immediately halts the undirected migration by disrupting the ECM-cytoskeleton coupling, as evidenced by the appearance of retrograde F-actin flow. When the motility later resumes, the activated integrin receptors render the cell selectively binding to the FBN path and reinitiates signaling events, including tyrosine phosphorylation of paxillin, that couple retrograde F-actin flow to the substrate. Thus, the calcium-resensitized cell can undergo a period of ECM-navigated movement, which later becomes desensitized. Our results also suggest that endogenous calcium transients as occur during spontaneous calcium oscillations may exert a cycling resensitization-desensitization control over cell's sensing of substrate guiding cues.


Asunto(s)
Calcio/metabolismo , Matriz Extracelular/metabolismo , Animales , Movimiento Celular , Células Cultivadas/citología , Carpa Dorada , Queratinocitos/metabolismo , Microscopía Fluorescente/métodos , Microscopía de Interferencia/métodos , Modelos Biológicos , Fosforilación , Transducción de Señal
3.
Exp Cell Res ; 313(1): 53-64, 2007 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17069797

RESUMEN

To deliver non-permeable molecules into cells, one can utilize protocols such as microinjection, electroporation, liposome-mediated transfection or virus-mediated transfection. However, each method has its own limitations. Here we have developed a new molecular delivery technique where live cells or tissues are bombarded with highly accelerated molecules directly and without the need to conjugate the molecules onto carrier particles, which is essential in conventional "gene gun" experiments. Gene bombardments can be applied to well-differentiated cells, primary cultured cells/neurons or tissue explants, all of which are notoriously difficult to transfect. Exogenously made proteins and even bacteria can be effectively introduced into cells where they can execute their function or replicate. Our experimental results and physical model support the notion that accelerated chemicals, proteins, or microorganisms carry enough momentum to penetrate the plasma membrane. The bombardment process is associated with a transient (approximately 10 min) increase in cell permeability, but such membrane leakage has a minimal adverse effect on cell survival.


Asunto(s)
Bacterias , Biolística/métodos , Sistemas de Liberación de Medicamentos/métodos , Animales , Técnicas Bacteriológicas , Células CHO , Línea Celular , Permeabilidad de la Membrana Celular , Cricetinae , Cricetulus , Proteínas del Citoesqueleto/administración & dosificación , Proteínas del Citoesqueleto/química , ADN Recombinante/administración & dosificación , ADN Recombinante/genética , Escherichia coli , Células HeLa , Humanos , Modelos Biológicos , Peso Molecular , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/química , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA