Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Small ; 20(26): e2309087, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38221690

RESUMEN

The severe deterioration of the marine ecosystem significantly negatively impacts the performance of solar-driven steam generation (SSG) and the quality of the obtained freshwater. Herein, a bifunctional Ag/MgFe2O4@SCW reactor with a sandwich structure is designed for efficient SSG and Cr(VI) reduction, which is constructed via in situ deposit Ag nanoparticles (NPs) and MgFe2O4 onto surface carbonized wood (SCW). Owing to the advanced sandwich structure and strong interfacial interactions between each component, an ultra-high evaporation rate of 1.55 kg m-2 h-1 and the efficiency of 88.6% are achieved using Ag/MgFe2O4@SCW under 1 sun. The system exhibits the long-term evaporation performance in the simulated sewage and strong acid/base solutions along with water-harvesting capacity in outdoor solar desalination. The quality of distilled water after desalination of actual seawater and NaCl solutions with different concentrations meets the WHO-recommended drinkable water standards. Furthermore, Ag/MgFe2O4@SCW shows outstanding antibacterial property, self-desalting capacity, as well as reusability and structure stability. Most importantly, the fast carrier separation endows Ag/MgFe2O4@SCW with superior photocatalytic activity and Cr(VI) photoreduction of up to 96.1% after 180 min of illumination. The bifunctional Ag/MgFe2O4@SCW reactor provides an advanced synergistic mechanism for improving SSG and photocatalytic performance, while being promising for solar-powered production of clean water.

2.
Sci Total Environ ; 806(Pt 2): 150662, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34597547

RESUMEN

For the simultaneous photocatalytic reduction of hexavalent chromium (Cr(VI)) and the degradation of rhodamine B (RhB), directional charge-transfer channels and efficient separation of photogenerated holes and electrons are important. Herein, a Z-scheme heterojunction photocatalyst, protonated g-C3N4/BiVO4 decorated with wood flour biochar (pCN/WFB/BiVO4), was prepared through a hydrothermal reaction and electrostatic self-assembly for Cr(VI) photoreduction and RhB photodegradation. The morphological features, crystalline structure, chemical composition, optical properties, specific surface area, and photoelectrochemical properties of the prepared samples were investigated. The pCN/WFB/BiVO4 photocatalyst exhibited superior removal performance when used to remove Cr(VI) and RhB separately or RhB-Cr(VI) system. The biochar bridge served as a charge-transfer channel between two semiconductors, and the electrons in protonated g-C3N4 (pCN) and BiVO4 achieved a charge balance. This led to the formation of a Z-scheme heterojunction, fast photogenerated charge separation, and a powerful redox ability. The pCN/WFB/BiVO4 photocatalyst provides new insight into the mechanisms responsible for boosting multicomponent photocatalytic reactions, while constituting a promising candidate for wastewater treatment.


Asunto(s)
Harina , Madera , Catálisis , Carbón Orgánico , Cromo , Rodaminas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA