Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 382
Filtrar
1.
Food Chem ; 462: 140990, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39208725

RESUMEN

The frequent occurrence of food safety incidents has aroused public concern about food safety and key contaminants. Foodborne pathogen contamination, pesticide residues, heavy metal residues, and other food safety problems will significantly impact human health. Therefore, developing efficient and sensitive detection method to ensure food safety early warning is paramount. The aptamer-based sensor (aptasensor) is a novel analytical tool with strong targeting, high sensitivity, low cost, etc. It has been extensively utilized in the pharmaceutical industry, biomedicine, environmental engineering, food safety detection, and in other diverse fields. This work reviewed the latest research progress of aptasensors for food analysis and detection, mainly introducing their application in detecting various key food contaminants. Subsequently, the sensing mechanism and performance of aptasensors are discussed. Finally, the review will examine the challenges and opportunities related to aptasensors for detecting major contaminants in food, and advance implementation of aptasensors in food safety and detection.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Contaminación de Alimentos , Inocuidad de los Alimentos , Nanoestructuras , Contaminación de Alimentos/análisis , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Nanoestructuras/química , Humanos , Análisis de los Alimentos/métodos , Análisis de los Alimentos/instrumentación
2.
Ying Yong Sheng Tai Xue Bao ; 35(7): 1866-1876, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39233416

RESUMEN

The lower limit temperature in the crop water stress index (CWSI) model refers to the canopy temperature (Tc) or the canopy-air temperature differences (dT) under well-watered conditions, which has significant impacts on the accuracy of the model in quantifying plant water status. At present, the direct estimation of lower limit temperature based on data-driven method has been successfully used in crops, but its applicability has not been tes-ted in forest ecosystems. We collected continuously and synchronously Tc and meteorological data in a Quercus variabilis plantation at the southern foot of Taihang Mountain to evaluate the feasibility of multiple linear regression model and BP neural network model for estimating the lower limit temperature and the accuracy of the CWSI indicating water status of the plantation. The results showed that, in the forest ecosystem without irrigation conditions, the lower limit temperature could be obtained by setting soil moisture as saturation in the multiple linear regression mo-del and the BP neural network model with soil water content, wind speed, net radiation, vapor pressure deficit and air temperature as input parameters. Combining the lower limit temperature and the upper limit temperature determined by the theoretical equation to normalize the measured Tc and dT could realize the non-destructive, rapid, and automatic diagnosis of the water status of Q. variabilis plantation. Among them, the CWSI obtained by combining the lower limit temperature determined by the dT under well-watered condition calculated by the BP neural network model and the upper limit temperature was the most suitable for accurate monitoring water status of the plantation. The coefficient of determination, root mean square error, and index of agreement between the calculated CWSI and measured CWSI were 0.81, 0.08, and 0.90, respectively. This study could provide a reference method for efficient and accurate monitoring of forest ecosystem water status.


Asunto(s)
Quercus , Temperatura , Agua , Quercus/crecimiento & desarrollo , Agua/análisis , China , Redes Neurales de la Computación , Ecosistema , Modelos Teóricos , Estrés Fisiológico , Bosques
3.
Sensors (Basel) ; 24(17)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39275731

RESUMEN

Accurate measurement of the pretightening stress for bolts has great significance for improving the assembly quality and safety, especially in severe environments. In this study, AlN thin film transducers were deposited on GH4169 nickel base alloy bolts using the RF magnetron sputtering, enabling a systematic investigation into the correlation between structures and the intensity of ultrasonic echo signals. Employing the finite element method resulted in consistency with the experimental data, enabling further exploration of the enhancement mechanism. With the increasing thickness of both the piezoelectric layer and the electrode layer, the intensity of the ultrasonic echo signals saw a great enhancement. The maximum-intensity observed increase is 14.7 times greater than that of the thinnest layers. Specifically, the thicker piezoelectric layer improves its mechanical displacement, while the increased thickness of the electrode layer contributes to better densification. An electrode diameter of nearly 4 mm is optimal for an AlN thin film transducer of M8 bolts. For pretightening the stress measurement, the sample with a strong and stable echo signal shows a low measurement error of pretightening below ±2.50%.

4.
Phys Chem Chem Phys ; 26(35): 23010-23022, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39171693

RESUMEN

Zn-Cu alloys have attracted great attention as biodegradable alloys owing to their excellent mechanical properties and biocompatibility, with corrosion characteristics being crucial for their suitability for biomedical applications. However, the unresolved identification of intermetallic compounds in Zn-Cu alloys affecting corrosion and the complexity of the application environment hamper the understanding of their electrochemical behavior. Utilizing high-throughput first-principles calculations and machine-learning accelerated evolutionary algorithms for screening the most stable compounds in Zn-Cu systems, a dataset encompassing the formation energy of 2033 compounds is generated. It reveals that most of the experimentally reported Zn-Cu compounds can be replicated, especially the structure of R32 CuZn5 is first discovered which possesses the lowest formation energy of -0.050 eV per atom. Furthermore, the simulated X-ray diffraction pattern matches perfectly with the experimental ones. By formulating 342 potential electrochemical reactions based on the binary compounds, the Pourbaix diagrams for Zn-Cu alloys are constructed to clarify the fundamental competition between different phases and ions. The calculated equilibrium potential of CuZn5 is higher than that of Zn through the forward reaction Zn + CuZn5 ⇌ CuZn5 + Zn2+ + 2e-, resulting in microcell formation owing to the stronger charge density localization in Zn compared to CuZn5. The presence of chlorine accelerates the corrosion of Zn through the reaction Zn + CuZn5 + 6Cl- + 6H2O ⇌ Cu + 6ZnOHCl + 6H+ + 12e-, where the formation of ZnOHCl disrupts the ZnO passive film and expands the corrosion pH range from 9.2 to 8.8. Our findings reveal an accurate quantitative corrosion mechanism for Zn-Cu alloys, providing an effective pathway to investigate the corrosion resistance of biodegradable alloys.

5.
Phys Rev E ; 109(5-2): 055105, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38907401

RESUMEN

The evolution of a shock-induced fluid layer is numerically investigated in order to reveal the underlying mechanism of the Richtmyer-Meshkov instability under the effect of a reshock wave. Six different types of fluid layer are initially set up to study the effect of amplitude perturbation, fluid-layer thickness, and phase position on the reshocked fluid-layer evolution. Interface morphology results show that the interface-coupling effect gets strengthened when the fluid-layer thickness is small, which means the development of spikes and bubbles is inhibited to some extent compared to the case with large initial fluid-layer thickness. Two jets emerge on interface II_{1} under out-of-phase conditions, while bubbles are generated on interface II_{1} when the initial phase position is in-phase. The mixing width of the fluid layer experiences an early linear growth stage and a late nonlinear stage, between which the growth of the mixing width is considerably inhibited by the passage of the first and the second reshock and mildly weakened during phase reversion. The amplitude growth of interfaces agrees well with the theoretical model prediction, including both the linear and nonlinear stages. In the very late stage, the amplitude perturbation growth tends to differ from the theoretical prediction due to the squeezing effect and stretching effect.

6.
Polymers (Basel) ; 16(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38932022

RESUMEN

In this study, a series of amine-modified mesoporous silica (AMS)-based epoxy composites with superhydrophobic biomimetic structure surface of Xanthosoma sagittifolium leaves (XSLs) were prepared and applied as anti-corrosion and anti-biofilm coatings. Initially, the AMS was synthesized by the base-catalyzed sol-gel reaction of tetraethoxysilane (TEOS) and triethoxysilane (APTES) through a non-surfactant templating route. Subsequently, a series of AMS-based epoxy composites were prepared by performing the ring-opening polymerization of DGEBA with T-403 in the presence of AMS spheres, followed by characterization through FTIR, TEM, and CA. Furthermore, a nano-casting technique with polydimethylsiloxane (PDMS) as the soft template was utilized to transfer the surface pattern of natural XSLs to AMS-based epoxy composites, leading to the formation of AMS-based epoxy composites with biomimetic structure. From a hydrophilic CA of 69°, the surface of non-biomimetic epoxy significantly increased to 152° upon introducing XSL surface structure to the AMS-based epoxy composites. Based on the standard electrochemical anti-corrosion and anti-biofilm measurements, the superhydrophobic BEAMS3 composite was found to exhibit a remarkable anti-corrosion efficiency of ~99% and antimicrobial efficacy of 82% as compared to that of hydrophilic epoxy coatings.

7.
J Immunol Methods ; 531: 113701, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852836

RESUMEN

Flagellum-mediated motility is essential to Pseudomonas aeruginosa (P. aeruginosa) virulence. Antibody against flagellin reduces motility and inhibits the spread of the bacteria from the infection site. The standard soft-agar assay to demonstrate anti-flagella motility inhibition requires long incubation times, is difficult to interpret, and requires large amounts of antibody. We have developed a time-lapse video microscopy method to analyze anti-flagellin P. aeruginosa motility inhibition that has several advantages over the soft agar assay. Antisera from mice immunized with flagellin type A or B were incubated with Green Fluorescent Protein (GFP)-expressing P. aeruginosa strain PAO1 (FlaB+) and GFP-expressing P. aeruginosa strain PAK (FlaA+). We analyzed the motion of the bacteria in video taken in ten second time intervals. An easily measurable decrease in bacterial locomotion was observed microscopically within minutes after the addition of small volumes of flagellin antiserum. From data analysis, we were able to quantify the efficacy of anti-flagellin antibodies in the test serum that decreased P. aeruginosa motility. This new video microscopy method to assess functional activity of anti-flagellin antibodies required less serum, less time, and had more robust and reproducible endpoints than the standard soft agar motility inhibition assay.


Asunto(s)
Anticuerpos Antibacterianos , Flagelos , Flagelina , Sueros Inmunes , Microscopía por Video , Pseudomonas aeruginosa , Flagelina/inmunología , Pseudomonas aeruginosa/inmunología , Animales , Sueros Inmunes/inmunología , Anticuerpos Antibacterianos/inmunología , Flagelos/inmunología , Ratones , Infecciones por Pseudomonas/inmunología , Infecciones por Pseudomonas/microbiología
8.
Animals (Basel) ; 14(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38929436

RESUMEN

The current study aimed to provide a precise assessment of the genetic parameters associated with growth and white spot syndrome virus (WSSV) resistance traits in Pacific white shrimp (Litopenaeus vannamei). This was achieved through a controlled WSSV challenge assay and the analysis of phenotypic values of five traits: body weight (BW), overall length (OL), body length (BL), tail length (TL), and survival hour post-infection (HPI). The analysis included test data from a total of 1017 individuals belonging to 20 families, of which 293 individuals underwent whole-genome resequencing, resulting in 18,137,179 high-quality SNP loci being obtained. Three methods, including pedigree-based best linear unbiased prediction (pBLUP), genomic best linear unbiased prediction (GBLUP), and single-step genomic BLUP (ssGBLUP) were utilized. Compared to the pBLUP model, the heritability of growth-related traits obtained from GBLUP and ssGBLUP was lower, whereas the heritability of WSSV resistance was higher. Both the GBLUP and ssGBLUP models significantly enhanced prediction accuracy. Specifically, the GBLUP model improved the prediction accuracy of BW, OL, BL, TL, and HPI by 4.77%, 21.93%, 19.73%, 19.34%, and 63.44%, respectively. Similarly, the ssGBLUP model improved prediction accuracy by 10.07%, 25.44%, 25.72%, 19.34%, and 122.58%, respectively. The WSSV resistance trait demonstrated the most substantial enhancement using both genomic prediction models, followed by body size traits (e.g., OL, BL, and TL), with BW showing the least improvement. Furthermore, the choice of models minimally impacted the assessment of genetic and phenotypic correlations. Genetic correlations among growth traits ranged from 0.767 to 0.999 across models, indicating high levels of positive correlations. Genetic correlations between growth and WSSV resistance traits ranged from (-0.198) to (-0.019), indicating low levels of negative correlations. This study assured significant advantages of the GBLUP and ssGBLUP models over the pBLUP model in the genetic parameter estimation of growth and WSSV resistance in L. vannamei, providing a foundation for further breeding programs.

9.
Microorganisms ; 12(5)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38792683

RESUMEN

A novel acidophilic, aerobic bacterium strain, MYW30-H2T, was isolated from a heap of polymetallic mine. Cells of strain MYW30-H2T were Gram-stain-positive, endospore-forming, motile, and rod-shaped. Strain MYW30-H2T grew at a temperature range of 30-45 °C (optimum 40 °C) and a pH range of 3.5-6.0 (optimum 4.0) in the presence of 0-0.5% (w/v) NaCl. Strain MYW30-H2T could grow heterotrophically on yeast extract and glucose, and grow mixotrophically using ferrous iron as an electron donor with yeast extract. Menaquinone-7 (MK-7) was the sole respiratory quinone of the strain. Iso-C15:0 and anteiso-C15:0 were the major cellular fatty acids. The 16S rRNA gene sequence analysis showed that MYW30-H2T was phylogenetically affiliated with the family Alicyclobacillaceae, and the sequence similarity with other Alicyclobacillaceae genera species was below 91.51%. The average amino acid identity value of the strain with its phylogenetically related species was 52.3-62.1%, which fell into the genus boundary range. The DNA G+C content of the strain was 44.2%. Based on physiological and phylogenetic analyses, strain MYW30-H2T represents a novel species of a new genus of the family Alicyclobacillaceae, for which the name Fodinisporobacter ferrooxydans gen. nov., sp. nov. is proposed. The type strain is MYW30-H2T (=CGMCC 1.17422T = KCTC 43278T).

10.
Int J Mol Sci ; 25(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38732180

RESUMEN

The Pacific white shrimp, Penaeus vannamei, is highly susceptible to white spot syndrome virus (WSSV). Our study explored the transcriptomic responses of P. vannamei from resistant and susceptible families, uncovering distinct expression patterns after WSSV infection. The analysis revealed a higher number of differentially expressed genes (DEGs) in the susceptible family following WSSV infection compared to the resistant family, when both were evaluated against their respective control groups, indicating that the host resistance of the family line influences the transcriptome. The results also showed that subsequent to an identical duration following WSSV infection, there were more DEGs in P. vannamei with a high viral load than in those with a low viral load. To identify common transcriptomic responses, we profiled DEGs across families at 96 and 228 h post-infection (hpi). The analysis yielded 64 up-regulated and 37 down-regulated DEGs at 96 hpi, with 33 up-regulated and 34 down-regulated DEGs at 228 hpi, showcasing the dynamics of the transcriptomic response over time. Real-time RT-PCR assays confirmed significant DEG expression changes post-infection. Our results offer new insights into shrimp's molecular defense mechanisms against WSSV.


Asunto(s)
Resistencia a la Enfermedad , Perfilación de la Expresión Génica , Penaeidae , Transcriptoma , Virus del Síndrome de la Mancha Blanca 1 , Animales , Penaeidae/virología , Penaeidae/genética , Penaeidae/inmunología , Virus del Síndrome de la Mancha Blanca 1/genética , Perfilación de la Expresión Génica/métodos , Resistencia a la Enfermedad/genética , Carga Viral , Regulación de la Expresión Génica
11.
Sci Total Environ ; 934: 173119, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750743

RESUMEN

Paraquat (PQ) is a broad-spectrum herbicide used worldwide and is a hazardous chemical to human health. Cumulative evidence strengthens the association between PQ exposure and the development of Parkinson's disease (PD). However, the underlying mechanism and effective interventions against PQ-induced neurotoxicity remain unclear. In this study, C57BL/6 J mice were treated with PQ (i.p., 10 mg/kg, twice a week) and melatonin (i.g., 20 mg/kg, twice a week) for 8 weeks. Results showed that PQ-induced motor deficits and midbrain dopaminergic neuronal damage in C57BL/6 J mice were protected by melatonin pretreatment. In isolated primary midbrain neurons and SK-N-SH cells, reduction of cell viability, elevation of total ROS levels, axonal mitochondrial transport defects and mitochondrial dysfunction caused by PQ were attenuated by melatonin. After screening of expression of main motors driving axonal mitochondrial transport, data showed that PQ-decreased KIF5A expression in mice midbrain and in SK-N-SH cell was antagonized by melatonin. Using the in vitro KIF5A-overexpression model, it was found that KIF5A overexpression inhibited PQ-caused neurotoxicity and mitochondrial dysfunction in SK-N-SH cells. In addition, application of MTNR1B (MT2) receptor antagonist, 4-P-PDOT, significantly counteracted the protection of melatonin against PQ-induced neurotoxicity. Further, Kif5a-knockdown diminished melatonin-induced alleviation of motor deficits and neuronal damage against PQ in C57BL/6 J mice. The present study establishes a causal link between environmental neurotoxicants exposure and PD etiology and provides effective interventive targets in the pathogenesis of PD.


Asunto(s)
Cinesinas , Melatonina , Mesencéfalo , Ratones Endogámicos C57BL , Mitocondrias , Paraquat , Paraquat/toxicidad , Animales , Melatonina/farmacología , Ratones , Mesencéfalo/efectos de los fármacos , Mesencéfalo/metabolismo , Cinesinas/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Herbicidas/toxicidad , Neuronas/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Transporte Axonal/efectos de los fármacos
12.
Food Chem ; 452: 139534, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38713981

RESUMEN

In this work, based on the Förster resonance energy transfer (FRET) mechanism strategy, a new dual-increasing emission proportional near-infrared (NIR) fluorescent probe Lay-1 was designed for fast benzoyl peroxide (BPO) detection in real food samples and biosystems. Specifically, it employed a naphthylimide derivative and a NIR fluorophore dicyanoisophorone derivative as the energy transfer donor and acceptor, respectively, and a phenylboronic acid (Ph-B(OH)2) as the responding group of BPO. In addition, the results exhibited that the fluorescence color of Lay-1 was changed from red to orange in the absence and the presence of BPO with a fast response time (∼120 s), high sensitivity, and an excellent limit of detection as low as 60.8 nM. Impressively, Lay-1 has been successfully used for BPO detection in real food samples and biosystems with satisfactory results. Therefore, Lay-1 can be a robust molecular tool to further investigate the physiological and pathological function of BPO.


Asunto(s)
Peróxido de Benzoílo , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Peróxido de Benzoílo/análisis , Peróxido de Benzoílo/química , Contaminación de Alimentos/análisis , Análisis de los Alimentos , Límite de Detección
13.
J Food Sci ; 89(6): 3629-3648, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38720581

RESUMEN

In response to the challenges of low automation and a lack of a continuous processing system for Taiping Houkui tea, this study proposed a design scheme for a continuous processing line and built a continuous processing prototype for testing by combining the production requirements of Taiping Houkui tea, the characteristics of withered leaves, and the existing relevant production equipment. First, the physical properties of Taiping Houkui tea were determined. A simulation was performed using the Hertz-Mindlin model, and the motion states of the tea leaves were obtained under different conditions to define the parameter design range of the experimental platform and verify its structural rationality. Then, the response surface methodology was used to optimize the working parameter ranges and obtain the best working parameters for the feeding and kneading mechanisms. Finally, a continuous production prototype was constructed for further production verification. The experimental results show that the success rate of continuous production on this platform was 70.68%, with an average output of approximately 0.4 kg/h for Taiping Houkui dry tea on a single slide track, and the produced tea was similar to manually made tea. This demonstrates that the continuous production technique has high feasibility and provides a reference for continuous production of Taiping Houkui tea.


Asunto(s)
Manipulación de Alimentos , Hojas de la Planta , , Té/química , Hojas de la Planta/química , Manipulación de Alimentos/métodos , Camellia sinensis/química
14.
Animals (Basel) ; 14(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38672285

RESUMEN

White spot disease (WSD) outbreaks pose a significant threat to the Pacific white shrimp (Litopenaeus vannamei) farming industry. The causative agent is the white spot syndrome virus (WSSV). There are no effective treatments for WSD so far. Therefore, understanding the resistance mechanisms of L. vannamei against the WSSV is crucial. C-type lectins (CTLs) are important pattern recognition receptors (PRRs) that promote agglutination, phagocytosis, encapsulation, bacteriostasis, and antiviral infections. This study cloned the C-type lectin domain family 4 member F (LvCLEC4F) from L. vannamei. LvCLEC4F contains a 492 bp open reading frame (ORF) encoding a protein of 163 amino acids, including a carbohydrate recognition domain (CRD). Following a challenge with the WSSV, the expression profile of LvCLEC4F was significantly altered. Using RNA interference (RNAi) technology, it was found that LvCLEC4F promotes WSSV replication and affects the expression levels of genes related to the regulation of apoptosis, signaling and cellular stress response, and immune defense. Meanwhile, the hemolymph agglutination phenomenon in vivo was weakened when LvCLEC4F was knocked down. These results indicated that LvCLEC4F may play an important role in the interaction between L. vannamei and WSSV.

15.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38673934

RESUMEN

The calmodulin-binding protein 60 (CBP60) family is a gene family unique to plants, and its members play a crucial role in plant defense responses to pathogens and growth and development. Considering that cotton is the primary source of natural cotton textile fiber, the functional study of its CBP60 gene family members is critical. In this research, we successfully identified 162 CBP60 members from the genomes of 21 species. Of these, 72 members were found in four cotton species, divided into four clades. To understand the function of GhCBP60B in cotton in depth, we conducted a detailed analysis of its sequence, structure, cis-acting elements, and expression patterns. Research results show that GhCBP60B is located in the nucleus and plays a crucial role in cotton growth and development and response to salt and drought stress. After using VIGS (virus-induced gene silencing) technology to conduct gene silencing experiments, we found that the plants silenced by GhCBP60B showed dwarf plants and shortened stem nodes, and the expression of related immune genes also changed. In further abiotic stress treatment experiments, we found that GhCBP60B-silenced plants were more sensitive to drought and salt stress, and their POD (peroxidase) activity was also significantly reduced. These results imply the vital role of GhCBP60B in cotton, especially in regulating plant responses to drought and salt stress. This study systematically analyzed CBP60 gene family members through bioinformatics methods and explored in depth the biological function of GhCBP60B in cotton. These research results lay a solid foundation for the future use of the GhCBP60B gene to improve cotton plant type and its drought and salt resistance.


Asunto(s)
Proteínas de Unión a Calmodulina , Regulación de la Expresión Génica de las Plantas , Gossypium , Estrés Fisiológico , Proteínas de Unión a Calmodulina/genética , Proteínas de Unión a Calmodulina/metabolismo , Sequías , Genoma de Planta , Gossypium/genética , Gossypium/metabolismo , Familia de Multigenes , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética
16.
Biology (Basel) ; 13(4)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38666830

RESUMEN

The Pacific whiteleg shrimp (Penaeus vannamei) is a highly significant species in shrimp aquaculture. In the production of shrimp larvae, noticeable variations in the reproductive capacity among female individuals have been observed. Some females experience slow gonadal development, resulting in the inability to spawn, while others undergo multiple maturations and contribute to the majority of larval supply. Despite numerous studies that have been conducted on the regulatory mechanisms of ovarian development in shrimp, the factors contributing to the differences in reproductive capacity among females remain unclear. To elucidate the underlying mechanisms, this study examined the differences in the ovarian characteristics between high and low reproductive bulks at different maturity stages, focusing on the cellular and molecular levels. Transmission electron microscopy analysis revealed that the abundance of the endoplasmic reticulum, ribosomes, mitochondria, and mitochondrial cristae in oocytes of high reproductive bulk was significantly higher than that of the low reproductive bulk in the early stages of ovarian maturation (stages I and II). As the ovaries progressed to late-stage maturation (stages III and IV), differences in the internal structures of oocytes between females with different reproductive capacities gradually diminished. Transcriptome analysis identified differentially expressed genes (DEGs) related to the mitochondria between two groups, suggesting that energy production processes might play a crucial role in the observed variations in ovary development. The expression levels of the ETS homology factor (EHF) and PRDI-BF1 and RIZ homology domain containing 9 (PRDM9), which were significantly different between the two groups, were compared using qRT-PCR in individuals at different stages of ovarian maturation. The results showed a significantly higher expression of the EHF gene in the ovaries of high reproductive bulk at the II and IV maturity stages compared to the low reproductive bulk, while almost no expression was detected in the eyestalk tissue of the high reproductive bulk. The PRDM9 gene was exclusively expressed in ovarian tissue, with significantly higher expression in the ovaries of the high reproductive bulk at the four maturity stages compared to the low reproductive bulk. Fluorescence in situ hybridization further compared the expression patterns of EHF and PRDM9 in the ovaries of individuals with different fertility levels, with both genes showing stronger positive signals in the high reproductive bulk at the four ovarian stages. These findings not only contribute to our understanding of the regulatory mechanisms involved in shrimp ovarian development, but also provide valuable insights for the cultivation of new varieties aimed at improving shrimp fecundity.

17.
Biology (Basel) ; 13(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38666880

RESUMEN

Marine animals possess genomes of considerable complexity and heterozygosity. Their unique reproductive system, characterized by high fecundity and substantial early mortality rates, increases the risk of inbreeding, potentially leading to severe inbreeding depression during various larval developmental stages. In this study, we established a set of inbred families of Fenneropenaeus chinensis, with an inbreeding coefficient of 0.25, and investigated elimination patterns and the manifestations of inbreeding depression during major larval developmental stages. Reduced-representation genome sequencing was utilized to explore the genotype frequency characteristics across two typical elimination stages. The results revealed notable mortality in hatching and metamorphosis into mysis and post-larvae stages. Inbreeding depression was also evident during these developmental stages, with depression rates of 24.36%, 29.23%, and 45.28%. Segregation analysis of SNPs indicated an important role of gametic selection before hatching, accounting for 45.95% of deviation in the zoea stage. During the zygotic selection phase of larval development, homozygote deficiency and heterozygote excess were the main selection types. Summation of the two types explained 82.31% and 89.91% of zygotic selection in the mysis and post-larvae stage, respectively. The overall distortion ratio decreased from 22.37% to 12.86% in the late developmental stage. A total of 783 loci were identified through selective sweep analysis. We also found the types of distortion at the same locus could change after the post-larvae stage. The predominant shifts included a transition of gametic selection toward normal segregation and other forms of distortion to heterozygous excess. This may be attributed to high-intensity selection on deleterious alleles and genetic hitchhiking effects. Following larval elimination, a greater proportion of heterozygous individuals were preserved. We detected an increase in genetic diversity parameters such as expected heterozygosity, observed heterozygosity, and polymorphic information content in the post-larvae stage. These findings suggest the presence of numerous recessive deleterious alleles and their linkage and suggest a major role of the partial dominance hypothesis. The results provide valuable insights into the mechanisms of inbreeding depression in marine animals and offer guidance for formulating breeding strategies in shrimp populations.

18.
Environ Sci Pollut Res Int ; 31(19): 28658-28670, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38561532

RESUMEN

Recently, visible-light-driven photocatalysis attracts much concerns in the remediation of environmental organic pollutants. In this study, the cerium doped biochar was fabricated through the hydrothermal method, and served as an efficient photocatalyst towards rhodamine B degradation under visible light irradiation. Almost 100% of rhodamine B was removed by 2.0 g·L-1 cerium doped biochar after 60 min of visible light irradiation at pH 3, but only about 25.50% and 29.60% of rhodamine B was removed by cerium dioxide and biochar under identical conditions. The degradation process coincided well with the pseudo-first-order kinetic model, and the photodegradation rate constant of cerium doped biochar was 0.0485·min-1, which was respectively 97 and 44 times that of biochar (0.0005·min-1) and cerium dioxide (0.0011·min-1). According to the trapping experiments and electron spin resonance spectroscopy analysis, h+, O2-∙ and ∙OH all participated in the degradation of rhodamine B in the cerium doped biochar photocatalytic systems, and the function of h+ and ∙OH was dominated. Consequently, the biochar could not only be an excellent carrier for supporting cerium dioxide, but also greatly improved its photocatalytic activity. The band gap of cerium doped biochar was narrower than cerium dioxide, which could improve the separation and migration of photogenerated electron-hole pairs under visible-light excitation, thus ultimately enhanced the degradation of rhodamine B. This work provided a deeper understanding of the preparation of biochar-based photocatalyst and its application in the remediation of environmental organic pollution.


Asunto(s)
Cerio , Carbón Orgánico , Rodaminas , Cerio/química , Carbón Orgánico/química , Catálisis , Rodaminas/química , Colorantes/química , Fotólisis , Cinética , Luz
19.
ACS Appl Mater Interfaces ; 16(15): 18874-18887, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38568163

RESUMEN

Sulfide-based solid electrolytes (SEs) are important for advancing all-solid-state batteries (ASSBs), primarily due to their high ionic conductivities and robust mechanical stability. Glassy SEs (GSEs) comprising mixed Si and P glass formers are particularly promising for their synthesis process and their ability to prevent lithium dendrite growth. However, to date, the complexity of their glassy structures hinders a complete understanding of the relationships between their structures and properties. This study introduces a new machine learning force field (ML-FF) tailored for lithium sulfide-based GSEs, enabling the exploration of their structural characteristics, mechanical properties, and lithium ionic conductivities. Using molecular dynamic (MD) simulations with this ML-FF, we explore the glass structures in varying compositions, including binary Li2S-SiS2 and Li2S-P2S5 as well as ternary Li2S-SiS2-P2S5. Our simulations yielded consistent results in terms of density, elastic modulus, radial distribution functions, and neutron structure factors compared to DFT and experimental work. Our findings reveal distinct local environments for Si and P within these glasses, with most Si atoms in edge-sharing configurations in Li2S-SiS2 and a mix of corner- and edge-sharing tetrahedra in the ternary Li2S-SiS2-P2S5 composition. For lithium ionic conductivity at 300 K, the 50Li2S-50SiS2 glass displayed the lowest conductivity at 2.1 mS/cm, while the 75Li2S-25P2S5 composition exhibited the highest conductivity at 3.6 mS/cm. The ternary glass showed a conductivity of 2.6 mS/cm, sitting between the two. Moreover, an in-depth analysis of lithium ion diffusion over the MD trajectory in the ternary glass demonstrated a significant correlation between diffusion pathways and the rotational dynamics of nearby SiS4 or PS4 tetrahedra. The ML-FF developed in this study provides an important tool for exploring a broad spectrum of solid-state and mixed former sulfide-based electrolytes.

20.
Phys Chem Chem Phys ; 26(14): 10932-10939, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38525965

RESUMEN

Novel materials displaying multiple exceptional properties are the backbone of the advancement of various industries. In the field of carbon materials, the combination of different properties has been extensively developed to satisfy diverse application scenarios, for instance, conductivity paired with exceptional hardness, outstanding toughness coupled with super-hardness, or heat resistance combined with super-hardness. In this work, a new carbon allotrope, bcc-C40 carbon, was predicted and investigated using first-principles calculations based on density functional theory. The allotrope exhibits unique structural features, including a combination of sp3 hybridized diatomic carbon and four-fold carbon chains. The mechanical and dynamic stability of bcc-C40 carbon has been demonstrated by its elastic constants and phonon spectra. Additionally, bcc-C40 carbon exhibits remarkable mechanical properties, such as zero homogeneous Poisson's ratio, superhardness with a value of 58 GPa, and stress-adaptive toughening. The analysis of the electronic properties demonstrates that bcc-C40 carbon is a semiconductor with an indirect band gap of 3.255 eV within the HSE06 functional, which increases with the increase in pressure. At a pressure of 150 GPa, bcc-C40 carbon transforms into a direct band gap material. These findings suggest the prospective use of bcc-C40 carbon as a superhard material and a novel semiconductor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA