Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(3): e25838, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38371961

RESUMEN

CO2 emissions play a crucial role in international politics. Countries enter into agreements to reduce the amount of pollution emitted into the atmosphere. Energy generation is one of the main contributors to pollution and is generally considered the main cause of climate change. Despite the interest in reducing CO2 emissions, few studies have focused on investigating energy pricing technologies. This article analyzes the technologies used to meet the demand for electricity from 2016 to 2021. The analysis is based on data provided by the Spanish Electricity System regulator, using statistical and clustering techniques. The objective is to establish the relationship between the level of pollution of electricity generation technologies and the hourly price and demand. Overall, the results suggest that there are two distinct periods with respect to the technologies used in the studied years, with a trend toward the use of cleaner technologies and a decrease in power generation using fossil fuels. It is also surprising that in the years 2016 to 2018, the most polluting technologies offered the cheapest prices.

2.
Nanomaterials (Basel) ; 11(10)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34685147

RESUMEN

The morphology of nanoparticles governs their properties for a range of important applications. Thus, the ability to statistically correlate this key particle performance parameter is paramount in achieving accurate control of nanoparticle properties. Among several effective techniques for morphological characterization of nanoparticles, transmission electron microscopy (TEM) can provide a direct, accurate characterization of the details of nanoparticle structures and morphology at atomic resolution. However, manually analyzing a large number of TEM images is laborious. In this work, we demonstrate an efficient, robust and highly automated unsupervised machine learning method for the metrology of nanoparticle systems based on TEM images. Our method not only can achieve statistically significant analysis, but it is also robust against variable image quality, imaging modalities, and particle dispersions. The ability to efficiently gain statistically significant particle metrology is critical in advancing precise particle synthesis and accurate property control.

3.
Artif Intell Med ; 110: 101976, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33250148

RESUMEN

Breast cancer is the most frequent cancer in women and the second most frequent overall after lung cancer. Although the 5-year survival rate of breast cancer is relatively high, recurrence is also common which often involves metastasis with its consequent threat for patients. DNA methylation-derived databases have become an interesting primary source for supervised knowledge extraction regarding breast cancer. Unfortunately, the study of DNA methylation involves the processing of hundreds of thousands of features for every patient. DNA methylation is featured by High Dimension Low Sample Size which has shown well-known issues regarding feature selection and generation. Autoencoders (AEs) appear as a specific technique for conducting nonlinear feature fusion. Our main objective in this work is to design a procedure to summarize DNA methylation by taking advantage of AEs. Our proposal is able to generate new features from the values of CpG sites of patients with and without recurrence. Then, a limited set of relevant genes to characterize breast cancer recurrence is proposed by the application of survival analysis and a pondered ranking of genes according to the distribution of their CpG sites. To test our proposal we have selected a dataset from The Cancer Genome Atlas data portal and an AE with a single-hidden layer. The literature and enrichment analysis (based on genomic context and functional annotation) conducted regarding the genes obtained with our experiment confirmed that all of these genes were related to breast cancer recurrence.


Asunto(s)
Neoplasias de la Mama , Metilación de ADN , Neoplasias de la Mama/genética , Femenino , Genómica , Humanos , Aprendizaje Automático , Recurrencia Local de Neoplasia/genética
4.
J Biomed Inform ; 72: 33-44, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28663073

RESUMEN

Breast cancer is the most common cause of cancer death in women. Today, post-transcriptional protein products of the genes involved in breast cancer can be identified by immunohistochemistry. However, this method has problems arising from the intra-observer and inter-observer variability in the assessment of pathologic variables, which may result in misleading conclusions. Using an optimal selection of preprocessing techniques may help to reduce observer variability. Deep learning has emerged as a powerful technique for any tasks related to machine learning such as classification and regression. The aim of this work is to use autoencoders (neural networks commonly used to feed deep learning architectures) to improve the quality of the data for developing immunohistochemistry signatures with prognostic value in breast cancer. Our testing on data from 222 patients with invasive non-special type breast carcinoma shows that an automatic binarization of experimental data after autoencoding could outperform other classical preprocessing techniques (such as human-dependent or automatic binarization only) when applied to the prognosis of breast cancer by immunohistochemical signatures.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Aprendizaje Automático , Redes Neurales de la Computación , Femenino , Humanos , Variaciones Dependientes del Observador , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA