Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Chem Phys ; 121(14): 7022-9, 2004 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-15473763

RESUMEN

The fluorescence recovery after photobleaching (FRAP) method and the fluorescence correlation spectroscopy (FCS) have been applied on suspensions of highly charged colloidal spheres with a small content of rod-shaped tobacco mosaic virus (TMV) particles. Since these methods only determine the self-diffusion coefficient of the fluorescently labeled species, D(S) of the rods and the spheres could independently be measured. The ionic strength of the dispersion medium has been varied to measure self-diffusion of rods and spheres in dependence on the degree of order of the matrix spheres. In contrast to FRAP, which allows the determination of the long-time self-diffusion coefficient D(S) (L), FCS measures self-diffusion on a shorter time scale. Thus a comparison of the results that were obtained by FCS and FRAP, in combination with Brownian Dynamics simulations, gives insight into the time dependence of the self-diffusion coefficient of an interacting colloidal system. As the mean interparticle distance of the matrix is of the same order of magnitude as the length of a TMV rod, the rotational motion is influenced by the assembly of spheres around a TMV particle. Since FCS is sensitive both to translational and rotational motion, whereas FRAP, which probes the diffusion at much larger length scales, is only sensitive to the translational motion of TMV, the comparison of diffusion coefficients measured employing FRAP and FCS can give some insights in the rotational diffusion: the experimental data indicate a slowing down of the rotational motion of a TMV rod with increasing structural order of the matrix spheres.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(5 Pt 2): 056313, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12786278

RESUMEN

We present an experimental approach to flow profiling within femtoliter sample volumes, which allows the high-precision measurements at the solid interface. The method is based on the spatial cross-correlation of the fluorescence response from labeled tracer particles (latex nanospheres or single dye molecules). Two excitation volumes, separated by a few micrometers, are created by two laser foci under a confocal microscope. The velocity of tracer particles is measured in a channel about 100 microm wide within a typical accuracy of 0.1%, and the positions of the walls are estimated independently of any hydrodynamic data. The underlying theory for the optical method is given for an arbitrary velocity profile, explicitly presenting the numerical convolutions necessary for a quantitative analysis. It is illustrated by using the Poiseuille flow of a Newtonian liquid with slip as an example. Our analysis yields a large apparent fluid velocity at the wall, which is mostly due to the impact of the colloidal (electrostatic) forces. This colloidal lift is crucially important in accelerating the transport processes of molecules and nanoparticles in microfluidic devices.

3.
Phys Rev Lett ; 90(21): 218301, 2003 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-12786596

RESUMEN

Fluorescence correlation spectroscopy was used to probe the dynamics of lambda-phage DNA in aqueous solution labeled with the randomly intercalating dye TOTO. The linear macromolecules (i). carry more than one chromophore and (ii). are larger than the waist of the focal volume. The correlation function decays significantly faster than expected for a stiff globule of corresponding size but is in good agreement with the dynamic model of semiflexible chains including hydrodynamic interactions. As the chromophore density is lowered the correlation time decreases in accordance with this model.


Asunto(s)
ADN Viral/química , Bacteriófago lambda/química , Bacteriófago lambda/genética , Modelos Químicos , Conformación de Ácido Nucleico , Soluciones , Espectrometría de Fluorescencia/métodos , Termodinámica
4.
Phys Rev Lett ; 90(6): 068302, 2003 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-12633334

RESUMEN

The dynamics of supported polymer films were studied by probing the surface height fluctuations as a function of lateral length scale using x-ray photon correlation spectroscopy. Measurements were performed on polystyrene (PS) films of thicknesses varying from 84 to 333 nm at temperatures above the PS glass transition temperature. Within a range of wave vectors spanning 10(-3) to 10(-2) nm(-1), good agreement is found between the measured surface dynamics and the theory of overdamped thermal capillary waves on thin films. Quantitatively, the data can be accounted for using the viscosity of bulk PS.

5.
Phys Rev Lett ; 86(10): 2042-5, 2001 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-11289850

RESUMEN

The dynamics of compositional fluctuations in a miscible, entangled homopolymer blend of poly(ethylene oxide) and poly(methyl methacrylate) were studied on length scales smaller than the polymer radii of gyration, and for times comparable to the polymers' disentanglement time. The measured relaxation rates are consistent with predictions of the reptation model, as expressed via the dynamic random-phase approximation. Moreover, the observed mode amplitudes allow for an estimate of the entanglement length in the blend.

6.
Phys Rev Lett ; 84(4): 785-8, 2000 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-11017372

RESUMEN

X-ray photon correlation spectroscopy and small-angle scattering measurements are presented of the dynamics and structure of concentrated suspensions of charge-stabilized polystyrene latex spheres dispersed in glycerol, for volume fractions from 3% to 52%. The static structures of the suspensions show essentially hard-sphere behavior, and the short-time dynamics shows good agreement with predictions for the wave-vector-dependent collective diffusion coefficient. However, the intermediate scattering function is found to violate a scaling behavior found previously for a sterically stabilized hard-sphere suspension.

7.
Artículo en Inglés | MEDLINE | ID: mdl-11138124

RESUMEN

X-ray photon correlation spectroscopy and small-angle x-ray scattering measurements are applied to characterize the dynamics and structure of concentrated suspensions of charge-stabilized polystyrene latex spheres dispersed in glycerol, for volume fractions between 2.7% and 52%. The static structures of the suspensions show essentially hard-sphere behavior. The short-time dynamics shows good agreement with predictions for the wave-vector-dependent collective diffusion coefficient, which are based on a hard-sphere model [C. W. J. Beenakker and P. Mazur, Physica A 126, 349 (1984)]. However, the intermediate scattering function is found to violate a scaling behavior found previously for a sterically stabilized hard-sphere suspension [P. N. Segre and P. N. Pusey, Phys. Rev. Lett. 77, 771 (1996)]. Our measurements are parametrized in terms of a viscoelastic model for the intermediate scattering function [W. Hess and R. Klein, Adv. Phys. 32, 173 (1983)]. Within this framework, two relaxation modes are predicted to contribute to the decay of the dynamic structure factor, with mode amplitudes depending on both wave vector and volume fraction. Our measurements indicate that, for particle volume fractions smaller than about 0.30, the intermediate scattering function is well described in terms of single-exponential decays, whereas a double-mode structure becomes apparent for more concentrated systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA