Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Technol ; : 1-14, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37139901

RESUMEN

This study investigated the electrooxidation (EO) of mature landfill leachate from the Brady Road Resource Management Facility, Winnipeg (Canada). EO using boron-doped diamond (BDD) electrodes were applied to treat real landfill leachate using a batch reactor. Response surface methodology (RSM) was used to determine the optimum process parameter levels. This research mainly focused on how different current densities (64, 95, and 125 mA/cm2) and operational time (30 min, 1, 1.5, 2, 2.5, and 3 hr.) influenced the optimisation of parameters such as chemical oxygen demand (COD), colour, ammonium, and phosphate removal in mature landfill leachate at varied pH. To attain a high percentage of removal for the parameters mentioned above, the optimal conditions were found to be a current density (J) of 125 mA/cm2 and a pH of 8. The optimum conditions resulted in removal percentages of 95.47%, 80.27%, 71.15%, and 47.15% for colour, NH4+, COD, and PO43- respectively, with an energy consumption of 0.05 kWh/dm3. The removal is related to a mechanism of the decomposition of water molecules to hydroxyl radicals and by direct anodic oxidation where the pollutants are transformed to CO2 and H2O. The novelty of this research lies in the optimisation of BDD electrode-based treatment for the simultaneous removal of COD, ammonium, phosphate, and colour from mature leachate collected from a severely cold climatic region of Canada. The BDD electrode showed excellent removal efficiencies for the targeted contaminants with lower energy consumption, making it a feasible method for on-site landfill leachate treatment.

2.
Sci Total Environ ; 864: 161194, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36581289

RESUMEN

In this study, cold atmospheric plasma (CAP) was explored as a novel advanced oxidation process (AOP) for water decontamination. Samples with high concentration aqueous solutions of Diclofenac sodium (DCF) and 4-Chlorobenzoic acid (pCBA) were treated by plasma systems. Atmospheric pressure plasma jets (APPJs) with a 1 pin-electrode and multi-needle electrodes (3 pins) configurations were used. The plasma generated using argon as working gas was touching a stationary liquid surface in the case of pin electrode-APPJ while for multi-needle electrodes-APPJ the liquid sample was flowing during treatment. In both configurations, a commercial RF power supply was used for plasma ignition. Measurement of electrical signals enabled precise determination of power delivered from the plasma to the sample. The optical emission spectroscopy (OES) of plasma confirmed the appearance of excited reactive species in the plasma, such as hydroxyl radicals and atomic oxygen which are considered to be key reactive species in AOPs for the degradation of organic pollutants. Treatments were conducted with two different volumes (5 mL and 250 mL) of contaminated water samples. The data acquired allowed calculation of degradation efficiency and energy yield for both plasma sources. When treated with pin-APPJ, almost complete degradation of 5 mL DCF occurred in 1 min with the initial concentration of 25 mg/L and 50 mg/L, whereas 5 mL pCBA almost degraded in 10 min at the initial concentration of 25 mg/L and 40 mg/L. The treatment results with multi-needle electrodes system confirmed that DCF almost completely degraded in 30 min and pCBA degraded about 24 % in 50 min. The maximum calculated energy yield for 50 % removal was 6465 mg/kWh after treatment of 250 mL of DCF aqueous solution utilizing the plasma recirculation technique. The measurements also provided an insight to the kinetics of DCF and pCBA degradation. Degradation products and pathways for DCF were determined using LC-MS measurements.

3.
Water Res ; 191: 116815, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33482587

RESUMEN

This work proposes a tube-in-tube membrane photoreactor, operated in a continuous-mode, to boost the efficiency of peroxydisulfate (PDS), through the photolytic (UV-C radiation) and photocatalytic (TiO2-P25) processes. This new technology can efficiently facilitate the transportation of PDS to the catalyst surface and water to be treated. The ultrafiltration tubular ceramic membrane was used as support for the TiO2-P25 and oxidant-catalyst/water contactor. Tests were performed using a synthetic solution and a municipal secondary effluent, both spiked with a pharmaceutical mix solution (paracetamol (PCT), furosemide (FRS), nimesulide (NMD), and diazepam (DZP); 200 µg L-1 of each). At steady-state regime, the UVC/S2O82-/TiO2 system, with radial PDS addition, showed the highest removal of pharmaceuticals in both matrices. Furthermore, twenty-two transformation products (TPs) were identified by applying LC-QTOF MS technique. Hence, the transformation pathways including hydroxylation in aromatic moiety by an electrophilic attack, electron transfer reactions, cleavage of C-O, C-N bond, H-abstraction and ring opening were proposed. TPs chemical structures were evaluated by in silico (Q)SAR approach using TOXTREE and EPI Suite™ software.


Asunto(s)
Peróxido de Hidrógeno , Contaminantes Químicos del Agua , Oxidación-Reducción , Sulfatos , Tecnología , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis
4.
Environ Sci Pollut Res Int ; 28(19): 24124-24137, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33483924

RESUMEN

Pharmaceuticals, such as dipyrone (DIP), paracetamol (PCT), and propranolol (PPN), are widely used analgesics and beta-blockers with the greatest presence in wastewaters and, consequently, in natural waters. The present work evaluated solar light-driven photocatalyst from petrochemical industrial waste (PW) as a strategy for the degradation of three pharmaceuticals in different water matrices (distilled water-DW, simulated wastewater-SWW, and real hospital wastewater-RHWW). All experiments were carried out in a solar photo-reactor with a capacity of 1 L and the experimental condition employed was a catalyst concentration of 350 mg L-1 at pH 5.0; these conditions were selected considering the Doehlert design validation spreadsheet and the desirability function. All materials prepared were conveniently characterized by zeta potential, small-angle X-ray scattering (SAXS), diffuse reflectance ultraviolet-visible (DRUV), and infrared spectroscopy. According to the results of the characterization, significant differences have been observed between the PW and the photocatalyst such as vibrational modes, optical absorption gap, and acid-basic characteristics on the surface, which suggests the potential use of the photocatalyst in the degradation of contaminants of emerging concern. Based on pharmaceutical degradation, DIP showed the highest photosensitivity (87.5%), and therefore the highest photocatalytic degradation followed by PPN; both compounds achieved final concentrations below the limit of quantification of the chromatographic method in DW. However, PCT was the most recalcitrant pharmaceutical in all matrices. Radicals from chromophoric natural organic matter (NOM) could improve PCT degradation in the SWW matrix (56%). Nevertheless, the results in RHWW showed a matrix effect with decreased the oxidation percentages (DIP-99%; PPN-71%; PCT-17%); hence, the addition of an oxidant such as H2O2 was studied as a pharmaceutical oxidation boost in RHWW. PPN was the molecule most sensitive to this strategy of oxidation (98%). Furthermore, 20 transformation products (TPs) generated throughout the treatment were identified by LC-QTOF MS using a customized TPs database. According to quantitative structure activity relationship (Q)SAR analysis, more than 75% of the TPs identified were not biodegradable. About 35% of them have oral toxicity characteristics indicated by Cramer's rules, and the DIP TPs represent high toxicity for different trophic levels.


Asunto(s)
Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Peróxido de Hidrógeno , Oxidación-Reducción , Dispersión del Ángulo Pequeño , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA