Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Proteome Res ; 23(7): 2332-2342, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38787630

RESUMEN

Here, we present FLiPPR, or FragPipe LiP (limited proteolysis) Processor, a tool that facilitates the analysis of data from limited proteolysis mass spectrometry (LiP-MS) experiments following primary search and quantification in FragPipe. LiP-MS has emerged as a method that can provide proteome-wide information on protein structure and has been applied to a range of biological and biophysical questions. Although LiP-MS can be carried out with standard laboratory reagents and mass spectrometers, analyzing the data can be slow and poses unique challenges compared to typical quantitative proteomics workflows. To address this, we leverage FragPipe and then process its output in FLiPPR. FLiPPR formalizes a specific data imputation heuristic that carefully uses missing data in LiP-MS experiments to report on the most significant structural changes. Moreover, FLiPPR introduces a data merging scheme and a protein-centric multiple hypothesis correction scheme, enabling processed LiP-MS data sets to be more robust and less redundant. These improvements strengthen statistical trends when previously published data are reanalyzed with the FragPipe/FLiPPR workflow. We hope that FLiPPR will lower the barrier for more users to adopt LiP-MS, standardize statistical procedures for LiP-MS data analysis, and systematize output to facilitate eventual larger-scale integration of LiP-MS data.


Asunto(s)
Espectrometría de Masas , Proteolisis , Proteómica , Proteómica/métodos , Espectrometría de Masas/métodos , Programas Informáticos , Proteoma/análisis , Flujo de Trabajo , Humanos
2.
bioRxiv ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38106106

RESUMEN

Here, we present FLiPPR, or FragPipe LiP (limited proteolysis) Processor, a tool that facilitates the analysis of data from limited proteolysis mass spectrometry (LiP-MS) experiments following primary search and quantification in FragPipe. LiP-MS has emerged as a method that can provide proteome-wide information on protein structure and has been applied to a range of biological and biophysical questions. Although LiP-MS can be carried out with standard laboratory reagents and mass spectrometers, analyzing the data can be slow and poses unique challenges compared to typical quantitative proteomics workflows. To address this, we leverage the fast, sensitive, and accurate search and label-free quantification algorithms in FragPipe and then process its output in FLiPPR. FLiPPR formalizes a specific data imputation heuristic that carefully uses missing data in LiP-MS experiments to report on the most significant structural changes. Moreover, FLiPPR introduces a new data merging scheme (from ions to cut-sites) and a protein-centric multiple hypothesis correction scheme, collectively enabling processed LiP-MS datasets to be more robust and less redundant. These improvements substantially strengthen statistical trends when previously published data are reanalyzed with the FragPipe/FLiPPR workflow. As a final feature, FLiPPR facilitates the collection of structural metadata to identify correlations between experiments and structural features. We hope that FLiPPR will lower the barrier for more users to adopt LiP-MS, standardize statistical procedures for LiP-MS data analysis, and systematize output to facilitate eventual larger-scale integration of LiP-MS data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA