Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Express ; 20 Suppl 6: A1011-8, 2012 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-23187652

RESUMEN

Moderate cylindrical cavity was used to regularize the laser-induced plasma for signal strength enhancement and precision improvement in laser-induced breakdown spectroscopy (LIBS). A polytetrafluoroethylene (PTFE) plate of 1.5 mm thickness with diameter of 3 mm was fabricated. It was placed closely on a sample surface and a laser pulse was shot through the center of the hole to the sample. Using coal as samples, it was verified that the configuration both enhanced the spectral line intensity and reduced shot-to-shot fluctuation, showing its great potential in improving the precision of LIBS analysis.

2.
Opt Express ; 20(23): A1011-8, 2012 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-23326850

RESUMEN

Moderate cylindrical cavity was used to regularize the laser-induced plasma for signal strength enhancement and precision improvement in laser-induced breakdown spectroscopy (LIBS). A polytetrafluoroethylene (PTFE) plate of 1.5 mm thickness with diameter of 3 mm was fabricated. It was placed closely on a sample surface and a laser pulse was shot through the center of the hole to the sample. Using coal as samples, it was verified that the configuration both enhanced the spectral line intensity and reduced shot-to-shot fluctuation, showing its great potential in improving the precision of LIBS analysis.

3.
Opt Express ; 16(17): 12435-45, 2008 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-18711480

RESUMEN

We present here a non-labeled, elemental analysis detection technique that is suitable for microfluidic chips, and demonstrate its applicability with the sensitive detection of sodium (Na). Spectroscopy performed on small volumes of liquids can be used to provide a true representation of the composition of the isolated fluid. Performing this using low power instrumentation integrated with a microfluidic platform makes it potentially feasible to develop a portable system. For this we present a simple approach to isolating minute amounts of fluid from bulk fluid within a microfluidic chip. The chip itself contains a patterned thin film resistive element that super-heats the sample in tens of microseconds, creating a micro-bubble that extrudes a micro-droplet from the microchip. For simplicity a non-valved microchip is used here as it is highly compatible to a continuous flow-based fluidic system suitable for continuous sampling of the fluid composition. We believe such a nonlabeled detection technique within a microfluidic system has wide applicability in elemental analysis. This is the first demonstration of laser-induced breakdown spectroscopy (LIBS) as a detection technology in conjunction with microfluidics, and represents first steps towards realizing a portable lower power LIBS-based detection system.


Asunto(s)
Algoritmos , Rayos Láser , Microquímica/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Estudios de Factibilidad , Miniaturización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA