RESUMEN
Parasitoids are known to exploit volatile cues emitted by plants after herbivore attack to locate their hosts. Feeding and oviposition of a polyphagous herbivore can induce the emission of odor blends that differ among distant plant species, and parasitoids have evolved an incredible ability to discriminate them and locate their hosts relying on olfactive cues. We evaluated the host searching behavior of the egg parasitoid Cosmocomoidea annulicornis (Ogloblin) (Hymenoptera: Mymaridae) in response to odors emitted by two taxonomically distant host plants, citrus and Johnson grass, after infestation by the sharpshooter Tapajosa rubromarginata (Signoret) (Hemiptera: Cicadellidae), vector of Citrus Variegated Chlorosis. Olfactory response of female parasitoids toward plants with no herbivore damage and plants with feeding damage, oviposition damage, and parasitized eggs was tested in a Y-tube olfactometer. In addition, volatiles released by the two host plant species constitutively and under herbivore attack were characterized. Females of C. annulicornis were able to detect and significantly preferred plants with host eggs, irrespectively of plant species. However, wasps were unable to discriminate between plants with healthy eggs and those with eggs previously parasitized by conspecifics. Analysis of plant volatiles induced after sharpshooter attack showed only two common volatiles between the two plant species, indole and ß-caryophyllene. Our results suggest that this parasitoid wasp uses common chemical cues released by many different plants after herbivory at long range and, once on the plant, other more specific chemical cues could trigger the final decision to oviposit.
Asunto(s)
Conducta de Búsqueda de Hospedador , Compuestos Orgánicos Volátiles , Avispas , Animales , Señales (Psicología) , Femenino , Interacciones Huésped-Parásitos , Larva/fisiología , Oviposición , Plantas , Compuestos Orgánicos Volátiles/análisis , Avispas/fisiologíaRESUMEN
The corn leafhopper Dalbulus maidis (Hemiptera: Cicadellidae), a specialist herbivore, is the cause of serious losses in maize yield for its capacity to transmit three important plant pathogens. They are also active phloem feeders, that insert stylets into the plant as they feed. Females place their eggs endophytically, totally inserted in the central midrib or the leaf blades, leaving conspicuous openings in the place where the ovipositor was inserted. In spite of the consequences that feeding and oviposition may have on the water status of the plant and the production of biomass, direct damage caused by the leafhopper has been only scarcely studied. In the present contribution, we measured biomass loss due to direct damage in maize plants under two watering regimes, with water supply ad libitum and with a watering restricted regime, emulating the most frequent field conditions. Moreover, we analyzed the effects of increasing densities of the vector on the biomass loss and plant mortality and the effects of females vs males. We observed that a density of 10 insects is sufficient to cause damage to 10-day-old seedlings, even in an ad libitum watering regime; however, in drought conditions, damage can be significantly greater, causing plant mortality. Also, females cause more damage than males, due to their oviposition habits.
Asunto(s)
Hemípteros , Herbivoria , Zea mays , Animales , Biomasa , Femenino , Masculino , Plantones , AguaRESUMEN
Volatile organic compounds (VOCs) released by plants are generally involved in host recognition and host selection for many phytophagous insects. However, for leafhoppers and planthoppers, host recognition is mainly thought to involve a phototactic response, but it is not clear if a host plant could be selected based on the volatile cues it emits. In this study we evaluated olfactory responses in dual choice tests of two Hemiptera species, Dalbulus maidis (De Long) (Cicadellidae) and Peregrinus maidis (Ashmead) (Delphacidae), vectors of maize-stunting diseases, to three maize (Zea mays L.) germplasms, a temperate and a tropical hybrid and a landrace. VOCs emitted by the germplasms were collected and identified using gas chromatography-mass spectrometry. The temperate hybrid released significantly more VOCs than the tropical hybrid and the landrace, and its volatile profile was dominated by (±)-linalool. D. maidis preferred odours emitted from the temperate hybrid, whereas P. maidis preferred odours from the tropical hybrid and the landrace over the temperate one. In order to test if linalool plays a role in the behavioural responses, we assayed this compound in combination with the tropical hybrid, to provide other contextual olfactory cues. D. maidis was attracted to the tropical hybrid plus a 0.0001% linalool solution, indicating that this compound could be part of a blend of attractants. Whereas addition of linalool resulted in a slight, though not significant, reduction in host VOC attractiveness for P. maidis. Both hopper species responded to olfactory cues in the absence of supplementary visual cues.
Asunto(s)
Hemípteros/fisiología , Olfato , Compuestos Orgánicos Volátiles/farmacología , Zea mays/química , Monoterpenos Acíclicos/farmacología , Animales , Conducta Apetitiva/fisiología , Conducta de Elección , Insectos Vectores/fisiología , Zea mays/clasificaciónRESUMEN
The common New World egg parasitoid of the corn leafhopper Dalbulus maidis (DeLong) (Hemiptera: Cicadellidae), an economically important pest of maize from Argentina to southern USA, has long been misidentified as the Palaearctic species Anagrus incarnatus Haliday or its synonym A. breviphragma Soyka (Hymenoptera: Mymaridae). Using a combination of genetic and morphometric methods, and available biological information, specimens reared from eggs of D. maidis in Argentina and Mexico, described and illustrated here as Anagrus (Anagrus) virlai Triapitsyn sp. n., are shown to be different from those of A. incarnatus from the Palaearctic region. Mitochondrial and nuclear ribosomal DNA sequence data provide clear evidence for the separation of the two species. Anagrus virlai is also known from Brazil, Colombia, Guadeloupe (France), and Guyana.
Asunto(s)
Himenópteros/anatomía & histología , Himenópteros/clasificación , Animales , Argentina , Brasil , Colombia , ADN Mitocondrial/genética , ADN Ribosómico/genética , Femenino , Francia , Guyana , México , Zea maysRESUMEN
The corn leafhopper, Dalbulus maidis (DeLong), is the most important leafhopper pest of maize, Zea mays, in the Americas. A survey of the diversity of its egg parasitoids was carried out in northwestern Argentina. During summer from 2004 to 2007, the samples were collected, using sentinel eggs of D. maidis on corn leaves, exposed in 48 cornfields. Sixteen species belonging to four families of Chalcidoidea (Hymenoptera) were identified. Among the parasitoid groups, Trichogrammatidae was the most represented family with eight species, followed by Mymaridae with six species. The mymarid Anagrus incarnatus Haliday and the trichogrammatid Pseudoligosita longifrangiata (Viggiani) were the most abundant and frequent parasitoids. The mean percentage of parasitism of D. maidis eggs was 16.4% and varied greatly among the sites, ranging from 0 to 56.7%; generally, it was higher in Yungas and lower in Monte province sites. The species richness was higher in the localities within the Yungas, with 13 parasitoid species, of which two species were dominant, comprising 83.6% of the collected individuals. Monte was the province that showed the highest diversity index (H´ = 1.62). In addition, we present information on the distribution, known host associations of each parasitoid species and an identification key to all species of egg parasitoids of D. maidis in Argentina.