Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 115(23): 233601, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26684117

RESUMEN

Utilizing a silicon nanobeam optomechanical crystal, we investigate the attractor diagram arising from the radiation pressure interaction between a localized optical cavity at λ_{c}=1542 nm and a mechanical resonance at ω_{m}/2π=3.72 GHz. At a temperature of T_{b}≈10 K, highly nonlinear driving of mechanical motion is observed via continuous wave optical pumping. Introduction of a time-dependent (modulated) optical pump is used to steer the system towards an otherwise inaccessible dynamically stable attractor in which mechanical self-oscillation occurs for an optical pump red detuned from the cavity resonance. An analytical model incorporating thermo-optic effects due to optical absorption heating is developed and found to accurately predict the measured device behavior.

2.
Phys Rev Lett ; 111(7): 073603, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23992065

RESUMEN

We study the nonlinear driven dissipative quantum dynamics of an array of optomechanical systems. At each site of such an array, a localized mechanical mode interacts with a laser-driven cavity mode via radiation pressure, and both photons and phonons can hop between neighboring sites. The competition between coherent interaction and dissipation gives rise to a rich phase diagram characterizing the optical and mechanical many-body states. For weak intercellular coupling, the mechanical motion at different sites is incoherent due to the influence of quantum noise. When increasing the coupling strength, however, we observe a transition towards a regime of phase-coherent mechanical oscillations. We employ a Gutzwiller ansatz as well as semiclassical Langevin equations on finite lattices, and we propose a realistic experimental implementation in optomechanical crystals.

3.
Phys Rev Lett ; 109(6): 063601, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-23006265

RESUMEN

In cavity optomechanics, nanomechanical motion couples to a localized optical mode. The regime of single-photon strong coupling is reached when the optical shift induced by a single phonon becomes comparable to the cavity linewidth. We consider a setup in this regime comprising two optical modes and one mechanical mode. For mechanical frequencies nearly resonant to the optical level splitting, we find the photon-phonon and the photon-photon interactions to be significantly enhanced. In addition to dispersive phonon detection in a novel regime, this offers the prospect of optomechanical photon measurement. We study these quantum nondemolition detection processes using both analytical and numerical approaches.

4.
Phys Rev Lett ; 107(4): 043603, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21867004

RESUMEN

Optomechanical systems couple light stored inside an optical cavity to the motion of a mechanical mode. Recent experiments have demonstrated setups, such as photonic crystal structures, that in principle allow one to confine several optical and vibrational modes on a single chip. Here we start to investigate the collective nonlinear dynamics in arrays of coupled optomechanical cells. We show that such "optomechanical arrays" can display synchronization, and that they can be described by an effective Kuramoto-type model.

5.
Phys Rev Lett ; 101(13): 133903, 2008 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-18851450

RESUMEN

We have explored the nonlinear dynamics of an optomechanical system consisting of an illuminated Fabry-Perot cavity, one of whose end mirrors is attached to a vibrating cantilever. The backaction induced by the bolometric light force produces negative damping such that the system enters a regime of nonlinear oscillations. We study the ensuing attractor diagram describing the nonlinear dynamics. A theory is presented that yields quantitative agreement with experimental results. This includes the observation of a regime where two mechanical modes of the cantilever are excited simultaneously.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA