Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 1648, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30733570

RESUMEN

sp-Hybridized carbon atomic wires are appealing systems with large property tunability. In particular, their electronic properties are intimately related to length, structure, and type of functional end-groups as well as to other effects such as the intermolecular charge transfer with metal nanoparticles. Here, by a combined Raman, Surface Enhanced Raman Scattering (SERS) investigation and first principles calculations of different N,N-dimethylanilino-terminated polyynes, we suggest that, upon charge transfer interaction with silver nanoparticles, the function of sp-carbon atomic wire can change from electron donor to electron acceptor by increasing the wire length. In addition, the insertion into the wire of a strong electrophilic group (1,1,4,4-tetracyanobuta-1,3-diene-2,3-diyl) changes the electron-accepting molecular regions involved in this intermolecular charge transfer. Our results indicate that carbon atomic wires could display a tunable charge transfer between the sp-wire and the metal, and hold promise as active materials in organic optoelectronics and photovoltaics.

2.
Nanoscale ; 9(36): 13640-13650, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28876004

RESUMEN

It is commonly accepted that the toxicity of carbonaceous particulate matter (PM) is due to the production of reactive oxygen species (ROS) which induce biological damage in the exposed cells. It is also known that PM produced during the combustion processes consists of a carbonaceous core "dressed" with other organic and/or inorganic materials. In spite of this knowledge, the role of these materials in the production of ROS has not yet been clear. This work aims at understanding whether "naked" carbonaceous particles are capable of forming ROS either in cell-free or in-cell systems. The problem has been treated based on the data collected from pure graphite samples of different sizes obtained by ball-milling pure graphite for various lengths of time. The experimental approach considered Raman, ESR (spin trapping), cell viability and fluorescence spectroscopy measurements. These techniques allowed us to carry out measurements both in cell and cell-free systems and the results consistently indicate that also pure naked carbonaceous particles can catalyze the electron transfer that produces superoxide ions. The process depends on the particle size and enlightens the role of the edges of the graphitic platelets. Evidence has been collected that even "naked" graphitic nanoparticles are capable of producing ROS and decreasing the cell viability thus representing a potential danger to human health.


Asunto(s)
Sistema Libre de Células , Grafito/farmacología , Especies Reactivas de Oxígeno/metabolismo , Contaminantes Atmosféricos , Línea Celular , Humanos , Tamaño de la Partícula , Material Particulado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA